![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon1ai | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 12-Feb-2007.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon1ai.1 | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
necon1ai | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1ai.1 | . . 3 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) | |
2 | 1 | necon3ai 2963 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ ¬ 𝜑) |
3 | 2 | notnotrd 133 | 1 ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2939 |
This theorem is referenced by: necon1i 2972 opnz 5484 inisegn0 6119 iotan0 6553 tz6.12i 6935 fvfundmfvn0 6950 brfvopabrbr 7013 elfvmptrab1 7044 brovpreldm 8113 brovex 8246 brwitnlem 8544 cantnflem1 9727 carddomi2 10008 rankcf 10815 1re 11259 eliooxr 13442 iccssioo2 13457 elfzoel1 13694 elfzoel2 13695 ismnd 18763 lactghmga 19438 pmtrmvd 19489 mpfrcl 22127 mhpsclcl 22169 fsubbas 23891 filuni 23909 ptcmplem2 24077 itg1climres 25764 mbfi1fseqlem4 25768 dvferm1lem 26037 dvferm2lem 26039 dvferm 26041 dvivthlem1 26062 coeeq2 26296 coe1termlem 26312 isppw 27172 dchrelbasd 27298 lgsne0 27394 wlkvv 29660 eldm3 35741 brfvimex 44016 brovmptimex 44017 clsneibex 44092 neicvgbex 44102 iotan0aiotaex 47043 afvnufveq 47097 gricrcl 47821 grlicrcl 47903 grilcbri2 47907 fvconstr 48686 fvconstrn0 48687 fvconstr2 48688 |
Copyright terms: Public domain | W3C validator |