![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon1ai | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 12-Feb-2007.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon1ai.1 | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
necon1ai | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1ai.1 | . . 3 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) | |
2 | 1 | necon3ai 2965 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ ¬ 𝜑) |
3 | 2 | notnotrd 133 | 1 ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2941 |
This theorem is referenced by: necon1i 2974 opnz 5473 inisegn0 6097 iotan0 6533 tz6.12i 6919 fvfundmfvn0 6934 brfvopabrbr 6995 elfvmptrab1 7025 brovpreldm 8077 brovex 8209 brwitnlem 8509 cantnflem1 9686 carddomi2 9967 rankcf 10774 1re 11216 eliooxr 13384 iccssioo2 13399 elfzoel1 13632 elfzoel2 13633 ismnd 18630 lactghmga 19275 pmtrmvd 19326 mpfrcl 21654 mhpsclcl 21696 fsubbas 23378 filuni 23396 ptcmplem2 23564 itg1climres 25239 mbfi1fseqlem4 25243 dvferm1lem 25508 dvferm2lem 25510 dvferm 25512 dvivthlem1 25532 coeeq2 25763 coe1termlem 25779 isppw 26625 dchrelbasd 26749 lgsne0 26845 wlkvv 28922 eldm3 34800 brfvimex 42859 brovmptimex 42860 clsneibex 42935 neicvgbex 42945 iotan0aiotaex 45880 afvnufveq 45934 fvconstr 47600 fvconstrn0 47601 fvconstr2 47602 |
Copyright terms: Public domain | W3C validator |