MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1ai Structured version   Visualization version   GIF version

Theorem necon1ai 2952
Description: Contrapositive inference for inequality. (Contributed by NM, 12-Feb-2007.) (Proof shortened by Wolf Lammen, 22-Nov-2019.)
Hypothesis
Ref Expression
necon1ai.1 𝜑𝐴 = 𝐵)
Assertion
Ref Expression
necon1ai (𝐴𝐵𝜑)

Proof of Theorem necon1ai
StepHypRef Expression
1 necon1ai.1 . . 3 𝜑𝐴 = 𝐵)
21necon3ai 2950 . 2 (𝐴𝐵 → ¬ ¬ 𝜑)
32notnotrd 133 1 (𝐴𝐵𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2926
This theorem is referenced by:  necon1i  2958  opnz  5428  inisegn0  6058  iotan0  6489  tz6.12i  6868  fvfundmfvn0  6883  brfvopabrbr  6947  elfvmptrab1  6978  brovpreldm  8045  brovex  8178  brwitnlem  8448  cantnflem1  9618  carddomi2  9899  rankcf  10706  eliooxr  13341  iccssioo2  13356  elfzoel1  13594  elfzoel2  13595  ismnd  18646  lactghmga  19319  pmtrmvd  19370  mpfrcl  22025  mhpsclcl  22067  fsubbas  23787  filuni  23805  ptcmplem2  23973  itg1climres  25648  mbfi1fseqlem4  25652  dvferm1lem  25921  dvferm2lem  25923  dvferm  25925  dvivthlem1  25946  coeeq2  26180  coe1termlem  26196  isppw  27057  dchrelbasd  27183  lgsne0  27279  wlkvv  29607  eldm3  35741  brfvimex  44008  brovmptimex  44009  clsneibex  44084  neicvgbex  44094  iotan0aiotaex  47087  afvnufveq  47141  gricrcl  47907  grlicrcl  47992  grilcbri2  47996  fvconstr  48843  fvconstrn0  48844  fvconstr2  48845  discsubc  49046  oppfrcl  49110  oppfrcl2  49111  oppfrcl3  49112  eloppf  49115  eloppf2  49116  oppcup3  49191  oppc1stflem  49269  catcrcl  49377
  Copyright terms: Public domain W3C validator