| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1ai | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 12-Feb-2007.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon1ai.1 | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| necon1ai | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon1ai.1 | . . 3 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | necon3ai 2950 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ ¬ 𝜑) |
| 3 | 2 | notnotrd 133 | 1 ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon1i 2958 opnz 5416 inisegn0 6049 iotan0 6472 tz6.12i 6848 fvfundmfvn0 6863 brfvopabrbr 6927 elfvmptrab1 6958 brovpreldm 8022 brovex 8155 brwitnlem 8425 cantnflem1 9585 carddomi2 9866 rankcf 10671 eliooxr 13307 iccssioo2 13322 elfzoel1 13560 elfzoel2 13561 ismnd 18611 lactghmga 19284 pmtrmvd 19335 mpfrcl 21990 mhpsclcl 22032 fsubbas 23752 filuni 23770 ptcmplem2 23938 itg1climres 25613 mbfi1fseqlem4 25617 dvferm1lem 25886 dvferm2lem 25888 dvferm 25890 dvivthlem1 25911 coeeq2 26145 coe1termlem 26161 isppw 27022 dchrelbasd 27148 lgsne0 27244 wlkvv 29572 eldm3 35734 brfvimex 43999 brovmptimex 44000 clsneibex 44075 neicvgbex 44085 iotan0aiotaex 47077 afvnufveq 47131 gricrcl 47898 grlicrcl 47991 grilcbri2 47995 fvconstr 48846 fvconstrn0 48847 fvconstr2 48848 discsubc 49049 oppfrcl 49113 oppfrcl2 49114 oppfrcl3 49115 eloppf 49118 eloppf2 49119 oppcup3 49194 oppc1stflem 49272 catcrcl 49380 |
| Copyright terms: Public domain | W3C validator |