Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon1ai | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 12-Feb-2007.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon1ai.1 | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
necon1ai | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1ai.1 | . . 3 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) | |
2 | 1 | necon3ai 2967 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ ¬ 𝜑) |
3 | 2 | notnotrd 133 | 1 ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: necon1i 2976 opnz 5382 inisegn0 5995 iotan0 6408 tz6.12i 6782 fvfundmfvn0 6794 brfvopabrbr 6854 elfvmptrab1 6884 brovpreldm 7900 brovex 8009 brwitnlem 8299 cantnflem1 9377 carddomi2 9659 rankcf 10464 1re 10906 eliooxr 13066 iccssioo2 13081 elfzoel1 13314 elfzoel2 13315 ismnd 18303 lactghmga 18928 pmtrmvd 18979 mpfrcl 21205 mhpsclcl 21247 fsubbas 22926 filuni 22944 ptcmplem2 23112 itg1climres 24784 mbfi1fseqlem4 24788 dvferm1lem 25053 dvferm2lem 25055 dvferm 25057 dvivthlem1 25077 coeeq2 25308 coe1termlem 25324 isppw 26168 dchrelbasd 26292 lgsne0 26388 wlkvv 27896 eldm3 33634 brfvimex 41525 brovmptimex 41526 clsneibex 41601 neicvgbex 41611 iotan0aiotaex 44472 afvnufveq 44526 fvconstr 46071 fvconstrn0 46072 fvconstr2 46073 |
Copyright terms: Public domain | W3C validator |