Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon1ai | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 12-Feb-2007.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon1ai.1 | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
necon1ai | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1ai.1 | . . 3 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) | |
2 | 1 | necon3ai 2965 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ ¬ 𝜑) |
3 | 2 | notnotrd 133 | 1 ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2941 |
This theorem is referenced by: necon1i 2974 opnz 5412 inisegn0 6030 iotan0 6463 tz6.12i 6847 fvfundmfvn0 6862 brfvopabrbr 6922 elfvmptrab1 6952 brovpreldm 7989 brovex 8100 brwitnlem 8400 cantnflem1 9538 carddomi2 9819 rankcf 10626 1re 11068 eliooxr 13230 iccssioo2 13245 elfzoel1 13478 elfzoel2 13479 ismnd 18477 lactghmga 19101 pmtrmvd 19152 mpfrcl 21393 mhpsclcl 21435 fsubbas 23116 filuni 23134 ptcmplem2 23302 itg1climres 24977 mbfi1fseqlem4 24981 dvferm1lem 25246 dvferm2lem 25248 dvferm 25250 dvivthlem1 25270 coeeq2 25501 coe1termlem 25517 isppw 26361 dchrelbasd 26485 lgsne0 26581 wlkvv 28196 eldm3 33933 brfvimex 41946 brovmptimex 41947 clsneibex 42022 neicvgbex 42032 iotan0aiotaex 44925 afvnufveq 44979 fvconstr 46523 fvconstrn0 46524 fvconstr2 46525 |
Copyright terms: Public domain | W3C validator |