![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon1ai | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 12-Feb-2007.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon1ai.1 | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
necon1ai | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1ai.1 | . . 3 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) | |
2 | 1 | necon3ai 2971 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ ¬ 𝜑) |
3 | 2 | notnotrd 133 | 1 ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2947 |
This theorem is referenced by: necon1i 2980 opnz 5493 inisegn0 6128 iotan0 6563 tz6.12i 6948 fvfundmfvn0 6963 brfvopabrbr 7026 elfvmptrab1 7057 brovpreldm 8130 brovex 8263 brwitnlem 8563 cantnflem1 9758 carddomi2 10039 rankcf 10846 1re 11290 eliooxr 13465 iccssioo2 13480 elfzoel1 13714 elfzoel2 13715 ismnd 18775 lactghmga 19447 pmtrmvd 19498 mpfrcl 22132 mhpsclcl 22174 fsubbas 23896 filuni 23914 ptcmplem2 24082 itg1climres 25769 mbfi1fseqlem4 25773 dvferm1lem 26042 dvferm2lem 26044 dvferm 26046 dvivthlem1 26067 coeeq2 26301 coe1termlem 26317 isppw 27175 dchrelbasd 27301 lgsne0 27397 wlkvv 29663 eldm3 35723 brfvimex 43988 brovmptimex 43989 clsneibex 44064 neicvgbex 44074 iotan0aiotaex 47008 afvnufveq 47062 gricrcl 47767 grlicrcl 47824 grilcbri2 47828 fvconstr 48569 fvconstrn0 48570 fvconstr2 48571 |
Copyright terms: Public domain | W3C validator |