| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1ai | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 12-Feb-2007.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon1ai.1 | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| necon1ai | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon1ai.1 | . . 3 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | necon3ai 2950 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ ¬ 𝜑) |
| 3 | 2 | notnotrd 133 | 1 ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon1i 2958 opnz 5433 inisegn0 6069 iotan0 6501 tz6.12i 6886 fvfundmfvn0 6901 brfvopabrbr 6965 elfvmptrab1 6996 brovpreldm 8068 brovex 8201 brwitnlem 8471 cantnflem1 9642 carddomi2 9923 rankcf 10730 eliooxr 13365 iccssioo2 13380 elfzoel1 13618 elfzoel2 13619 ismnd 18664 lactghmga 19335 pmtrmvd 19386 mpfrcl 21992 mhpsclcl 22034 fsubbas 23754 filuni 23772 ptcmplem2 23940 itg1climres 25615 mbfi1fseqlem4 25619 dvferm1lem 25888 dvferm2lem 25890 dvferm 25892 dvivthlem1 25913 coeeq2 26147 coe1termlem 26163 isppw 27024 dchrelbasd 27150 lgsne0 27246 wlkvv 29555 eldm3 35748 brfvimex 44015 brovmptimex 44016 clsneibex 44091 neicvgbex 44101 iotan0aiotaex 47094 afvnufveq 47148 gricrcl 47914 grlicrcl 47999 grilcbri2 48003 fvconstr 48850 fvconstrn0 48851 fvconstr2 48852 discsubc 49053 oppfrcl 49117 oppfrcl2 49118 oppfrcl3 49119 eloppf 49122 eloppf2 49123 oppcup3 49198 oppc1stflem 49276 catcrcl 49384 |
| Copyright terms: Public domain | W3C validator |