![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon1ai | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 12-Feb-2007.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon1ai.1 | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
necon1ai | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1ai.1 | . . 3 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) | |
2 | 1 | necon3ai 2966 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ ¬ 𝜑) |
3 | 2 | notnotrd 133 | 1 ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2942 |
This theorem is referenced by: necon1i 2975 opnz 5474 inisegn0 6098 iotan0 6534 tz6.12i 6920 fvfundmfvn0 6935 brfvopabrbr 6996 elfvmptrab1 7026 brovpreldm 8075 brovex 8207 brwitnlem 8507 cantnflem1 9684 carddomi2 9965 rankcf 10772 1re 11214 eliooxr 13382 iccssioo2 13397 elfzoel1 13630 elfzoel2 13631 ismnd 18628 lactghmga 19273 pmtrmvd 19324 mpfrcl 21648 mhpsclcl 21690 fsubbas 23371 filuni 23389 ptcmplem2 23557 itg1climres 25232 mbfi1fseqlem4 25236 dvferm1lem 25501 dvferm2lem 25503 dvferm 25505 dvivthlem1 25525 coeeq2 25756 coe1termlem 25772 isppw 26618 dchrelbasd 26742 lgsne0 26838 wlkvv 28884 eldm3 34731 brfvimex 42777 brovmptimex 42778 clsneibex 42853 neicvgbex 42863 iotan0aiotaex 45801 afvnufveq 45855 fvconstr 47522 fvconstrn0 47523 fvconstr2 47524 |
Copyright terms: Public domain | W3C validator |