| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1ai | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 12-Feb-2007.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon1ai.1 | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| necon1ai | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon1ai.1 | . . 3 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | necon3ai 2953 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ ¬ 𝜑) |
| 3 | 2 | notnotrd 133 | 1 ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2929 |
| This theorem is referenced by: necon1i 2961 opnz 5411 inisegn0 6046 iotan0 6471 tz6.12i 6848 fvfundmfvn0 6862 brfvopabrbr 6926 elfvmptrab1 6957 brovpreldm 8019 brovex 8152 brwitnlem 8422 cantnflem1 9579 carddomi2 9863 rankcf 10668 eliooxr 13304 iccssioo2 13319 elfzoel1 13557 elfzoel2 13558 ismnd 18645 lactghmga 19317 pmtrmvd 19368 mpfrcl 22020 mhpsclcl 22062 fsubbas 23782 filuni 23800 ptcmplem2 23968 itg1climres 25642 mbfi1fseqlem4 25646 dvferm1lem 25915 dvferm2lem 25917 dvferm 25919 dvivthlem1 25940 coeeq2 26174 coe1termlem 26190 isppw 27051 dchrelbasd 27177 lgsne0 27273 wlkvv 29605 eldm3 35805 brfvimex 44067 brovmptimex 44068 clsneibex 44143 neicvgbex 44153 iotan0aiotaex 47132 afvnufveq 47186 gricrcl 47953 grlicrcl 48046 grilcbri2 48050 fvconstr 48901 fvconstrn0 48902 fvconstr2 48903 discsubc 49104 oppfrcl 49168 oppfrcl2 49169 oppfrcl3 49170 eloppf 49173 eloppf2 49174 oppcup3 49249 oppc1stflem 49327 catcrcl 49435 |
| Copyright terms: Public domain | W3C validator |