MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1ai Structured version   Visualization version   GIF version

Theorem necon1ai 2970
Description: Contrapositive inference for inequality. (Contributed by NM, 12-Feb-2007.) (Proof shortened by Wolf Lammen, 22-Nov-2019.)
Hypothesis
Ref Expression
necon1ai.1 𝜑𝐴 = 𝐵)
Assertion
Ref Expression
necon1ai (𝐴𝐵𝜑)

Proof of Theorem necon1ai
StepHypRef Expression
1 necon1ai.1 . . 3 𝜑𝐴 = 𝐵)
21necon3ai 2967 . 2 (𝐴𝐵 → ¬ ¬ 𝜑)
32notnotrd 133 1 (𝐴𝐵𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wne 2942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2943
This theorem is referenced by:  necon1i  2976  opnz  5382  inisegn0  5995  iotan0  6408  tz6.12i  6782  fvfundmfvn0  6794  brfvopabrbr  6854  elfvmptrab1  6884  brovpreldm  7900  brovex  8009  brwitnlem  8299  cantnflem1  9377  carddomi2  9659  rankcf  10464  1re  10906  eliooxr  13066  iccssioo2  13081  elfzoel1  13314  elfzoel2  13315  ismnd  18303  lactghmga  18928  pmtrmvd  18979  mpfrcl  21205  mhpsclcl  21247  fsubbas  22926  filuni  22944  ptcmplem2  23112  itg1climres  24784  mbfi1fseqlem4  24788  dvferm1lem  25053  dvferm2lem  25055  dvferm  25057  dvivthlem1  25077  coeeq2  25308  coe1termlem  25324  isppw  26168  dchrelbasd  26292  lgsne0  26388  wlkvv  27896  eldm3  33634  brfvimex  41525  brovmptimex  41526  clsneibex  41601  neicvgbex  41611  iotan0aiotaex  44472  afvnufveq  44526  fvconstr  46071  fvconstrn0  46072  fvconstr2  46073
  Copyright terms: Public domain W3C validator