| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1ai | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 12-Feb-2007.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon1ai.1 | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| necon1ai | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon1ai.1 | . . 3 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | necon3ai 2958 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ ¬ 𝜑) |
| 3 | 2 | notnotrd 133 | 1 ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2934 |
| This theorem is referenced by: necon1i 2966 opnz 5453 inisegn0 6090 iotan0 6526 tz6.12i 6909 fvfundmfvn0 6924 brfvopabrbr 6988 elfvmptrab1 7019 brovpreldm 8093 brovex 8226 brwitnlem 8524 cantnflem1 9708 carddomi2 9989 rankcf 10796 1re 11240 eliooxr 13426 iccssioo2 13441 elfzoel1 13679 elfzoel2 13680 ismnd 18720 lactghmga 19391 pmtrmvd 19442 mpfrcl 22048 mhpsclcl 22090 fsubbas 23810 filuni 23828 ptcmplem2 23996 itg1climres 25672 mbfi1fseqlem4 25676 dvferm1lem 25945 dvferm2lem 25947 dvferm 25949 dvivthlem1 25970 coeeq2 26204 coe1termlem 26220 isppw 27081 dchrelbasd 27207 lgsne0 27303 wlkvv 29612 eldm3 35783 brfvimex 44017 brovmptimex 44018 clsneibex 44093 neicvgbex 44103 iotan0aiotaex 47089 afvnufveq 47143 gricrcl 47894 grlicrcl 47979 grilcbri2 47983 fvconstr 48805 fvconstrn0 48806 fvconstr2 48807 discsubc 48998 oppfrcl 49043 oppfrcl2 49044 oppfrcl3 49045 oppcup3 49109 |
| Copyright terms: Public domain | W3C validator |