| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1ai | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 12-Feb-2007.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon1ai.1 | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| necon1ai | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon1ai.1 | . . 3 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | necon3ai 2950 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ ¬ 𝜑) |
| 3 | 2 | notnotrd 133 | 1 ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon1i 2958 opnz 5428 inisegn0 6058 iotan0 6489 tz6.12i 6868 fvfundmfvn0 6883 brfvopabrbr 6947 elfvmptrab1 6978 brovpreldm 8045 brovex 8178 brwitnlem 8448 cantnflem1 9618 carddomi2 9899 rankcf 10706 eliooxr 13341 iccssioo2 13356 elfzoel1 13594 elfzoel2 13595 ismnd 18640 lactghmga 19311 pmtrmvd 19362 mpfrcl 21968 mhpsclcl 22010 fsubbas 23730 filuni 23748 ptcmplem2 23916 itg1climres 25591 mbfi1fseqlem4 25595 dvferm1lem 25864 dvferm2lem 25866 dvferm 25868 dvivthlem1 25889 coeeq2 26123 coe1termlem 26139 isppw 27000 dchrelbasd 27126 lgsne0 27222 wlkvv 29530 eldm3 35721 brfvimex 43988 brovmptimex 43989 clsneibex 44064 neicvgbex 44074 iotan0aiotaex 47067 afvnufveq 47121 gricrcl 47887 grlicrcl 47972 grilcbri2 47976 fvconstr 48823 fvconstrn0 48824 fvconstr2 48825 discsubc 49026 oppfrcl 49090 oppfrcl2 49091 oppfrcl3 49092 eloppf 49095 eloppf2 49096 oppcup3 49171 oppc1stflem 49249 catcrcl 49357 |
| Copyright terms: Public domain | W3C validator |