| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1ai | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 12-Feb-2007.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon1ai.1 | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| necon1ai | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon1ai.1 | . . 3 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | necon3ai 2950 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ ¬ 𝜑) |
| 3 | 2 | notnotrd 133 | 1 ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon1i 2958 opnz 5428 inisegn0 6058 iotan0 6489 tz6.12i 6868 fvfundmfvn0 6883 brfvopabrbr 6947 elfvmptrab1 6978 brovpreldm 8045 brovex 8178 brwitnlem 8448 cantnflem1 9618 carddomi2 9899 rankcf 10706 eliooxr 13341 iccssioo2 13356 elfzoel1 13594 elfzoel2 13595 ismnd 18646 lactghmga 19319 pmtrmvd 19370 mpfrcl 22025 mhpsclcl 22067 fsubbas 23787 filuni 23805 ptcmplem2 23973 itg1climres 25648 mbfi1fseqlem4 25652 dvferm1lem 25921 dvferm2lem 25923 dvferm 25925 dvivthlem1 25946 coeeq2 26180 coe1termlem 26196 isppw 27057 dchrelbasd 27183 lgsne0 27279 wlkvv 29607 eldm3 35741 brfvimex 44008 brovmptimex 44009 clsneibex 44084 neicvgbex 44094 iotan0aiotaex 47087 afvnufveq 47141 gricrcl 47907 grlicrcl 47992 grilcbri2 47996 fvconstr 48843 fvconstrn0 48844 fvconstr2 48845 discsubc 49046 oppfrcl 49110 oppfrcl2 49111 oppfrcl3 49112 eloppf 49115 eloppf2 49116 oppcup3 49191 oppc1stflem 49269 catcrcl 49377 |
| Copyright terms: Public domain | W3C validator |