MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1ai Structured version   Visualization version   GIF version

Theorem necon1ai 2969
Description: Contrapositive inference for inequality. (Contributed by NM, 12-Feb-2007.) (Proof shortened by Wolf Lammen, 22-Nov-2019.)
Hypothesis
Ref Expression
necon1ai.1 𝜑𝐴 = 𝐵)
Assertion
Ref Expression
necon1ai (𝐴𝐵𝜑)

Proof of Theorem necon1ai
StepHypRef Expression
1 necon1ai.1 . . 3 𝜑𝐴 = 𝐵)
21necon3ai 2966 . 2 (𝐴𝐵 → ¬ ¬ 𝜑)
32notnotrd 133 1 (𝐴𝐵𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1542  wne 2941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2942
This theorem is referenced by:  necon1i  2975  opnz  5474  inisegn0  6098  iotan0  6534  tz6.12i  6920  fvfundmfvn0  6935  brfvopabrbr  6996  elfvmptrab1  7026  brovpreldm  8075  brovex  8207  brwitnlem  8507  cantnflem1  9684  carddomi2  9965  rankcf  10772  1re  11214  eliooxr  13382  iccssioo2  13397  elfzoel1  13630  elfzoel2  13631  ismnd  18628  lactghmga  19273  pmtrmvd  19324  mpfrcl  21648  mhpsclcl  21690  fsubbas  23371  filuni  23389  ptcmplem2  23557  itg1climres  25232  mbfi1fseqlem4  25236  dvferm1lem  25501  dvferm2lem  25503  dvferm  25505  dvivthlem1  25525  coeeq2  25756  coe1termlem  25772  isppw  26618  dchrelbasd  26742  lgsne0  26838  wlkvv  28884  eldm3  34731  brfvimex  42777  brovmptimex  42778  clsneibex  42853  neicvgbex  42863  iotan0aiotaex  45801  afvnufveq  45855  fvconstr  47522  fvconstrn0  47523  fvconstr2  47524
  Copyright terms: Public domain W3C validator