Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon1ai | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 12-Feb-2007.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon1ai.1 | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
necon1ai | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1ai.1 | . . 3 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) | |
2 | 1 | necon3ai 2969 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ ¬ 𝜑) |
3 | 2 | notnotrd 133 | 1 ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2945 |
This theorem is referenced by: necon1i 2978 opnz 5389 inisegn0 6009 iotan0 6427 tz6.12i 6809 fvfundmfvn0 6821 brfvopabrbr 6881 elfvmptrab1 6911 brovpreldm 7938 brovex 8047 brwitnlem 8346 cantnflem1 9456 carddomi2 9737 rankcf 10542 1re 10984 eliooxr 13146 iccssioo2 13161 elfzoel1 13394 elfzoel2 13395 ismnd 18397 lactghmga 19022 pmtrmvd 19073 mpfrcl 21304 mhpsclcl 21346 fsubbas 23027 filuni 23045 ptcmplem2 23213 itg1climres 24888 mbfi1fseqlem4 24892 dvferm1lem 25157 dvferm2lem 25159 dvferm 25161 dvivthlem1 25181 coeeq2 25412 coe1termlem 25428 isppw 26272 dchrelbasd 26396 lgsne0 26492 wlkvv 28003 eldm3 33737 brfvimex 41643 brovmptimex 41644 clsneibex 41719 neicvgbex 41729 iotan0aiotaex 44596 afvnufveq 44650 fvconstr 46194 fvconstrn0 46195 fvconstr2 46196 |
Copyright terms: Public domain | W3C validator |