MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1ai Structured version   Visualization version   GIF version

Theorem necon1ai 2968
Description: Contrapositive inference for inequality. (Contributed by NM, 12-Feb-2007.) (Proof shortened by Wolf Lammen, 22-Nov-2019.)
Hypothesis
Ref Expression
necon1ai.1 𝜑𝐴 = 𝐵)
Assertion
Ref Expression
necon1ai (𝐴𝐵𝜑)

Proof of Theorem necon1ai
StepHypRef Expression
1 necon1ai.1 . . 3 𝜑𝐴 = 𝐵)
21necon3ai 2965 . 2 (𝐴𝐵 → ¬ ¬ 𝜑)
32notnotrd 133 1 (𝐴𝐵𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wne 2940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2941
This theorem is referenced by:  necon1i  2974  opnz  5412  inisegn0  6030  iotan0  6463  tz6.12i  6847  fvfundmfvn0  6862  brfvopabrbr  6922  elfvmptrab1  6952  brovpreldm  7989  brovex  8100  brwitnlem  8400  cantnflem1  9538  carddomi2  9819  rankcf  10626  1re  11068  eliooxr  13230  iccssioo2  13245  elfzoel1  13478  elfzoel2  13479  ismnd  18477  lactghmga  19101  pmtrmvd  19152  mpfrcl  21393  mhpsclcl  21435  fsubbas  23116  filuni  23134  ptcmplem2  23302  itg1climres  24977  mbfi1fseqlem4  24981  dvferm1lem  25246  dvferm2lem  25248  dvferm  25250  dvivthlem1  25270  coeeq2  25501  coe1termlem  25517  isppw  26361  dchrelbasd  26485  lgsne0  26581  wlkvv  28196  eldm3  33933  brfvimex  41946  brovmptimex  41947  clsneibex  42022  neicvgbex  42032  iotan0aiotaex  44925  afvnufveq  44979  fvconstr  46523  fvconstrn0  46524  fvconstr2  46525
  Copyright terms: Public domain W3C validator