MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf2 Structured version   Visualization version   GIF version

Theorem nf2 1789
Description: Alternate definition of nonfreeness. (Contributed by BJ, 16-Sep-2021.)
Assertion
Ref Expression
nf2 (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑))

Proof of Theorem nf2
StepHypRef Expression
1 df-nf 1788 . 2 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
2 imor 849 . 2 ((∃𝑥𝜑 → ∀𝑥𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑))
3 orcom 866 . 2 ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑))
41, 2, 33bitri 296 1 (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 843  wal 1537  wex 1783  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844  df-nf 1788
This theorem is referenced by:  nf3  1790
  Copyright terms: Public domain W3C validator