![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orcom | Structured version Visualization version GIF version |
Description: Commutative law for disjunction. Theorem *4.31 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 15-Nov-2012.) |
Ref | Expression |
---|---|
orcom | ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm1.4 902 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (𝜓 ∨ 𝜑)) | |
2 | pm1.4 902 | . 2 ⊢ ((𝜓 ∨ 𝜑) → (𝜑 ∨ 𝜓)) | |
3 | 1, 2 | impbii 201 | 1 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∨ wo 880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-or 881 |
This theorem is referenced by: orcomd 904 orbi1i 944 orbi1d 947 orass 952 or32 956 or42 958 pm5.7 983 oranabs 1029 pm5.61 1030 ordir 1036 pm5.17 1042 dn1 1086 dfifp7 1098 3orrot 1118 3orcombOLD 1121 cadan 1724 cadcomb 1728 nf2 1886 nfnbi 1956 nfnbiOLD 1957 19.31v 2042 19.31 2279 r19.30 3292 eueq2 3605 uncom 3984 undif3 4118 reuun2 4139 dfif2 4308 rabrsn 4477 tppreqb 4554 ssunsn2 4576 prel12OLD 4598 disjor 4855 zfpair 5125 somin1 5771 ordtri2 5998 on0eqel 6080 fununi 6197 eliman0 6469 swoer 8039 supgtoreq 8645 cantnflem1d 8862 cantnflem1 8863 cflim2 9400 dffin7-2 9535 fpwwe2lem13 9779 suplem2pr 10190 leloe 10443 mulcan2g 11006 fimaxre 11298 arch 11615 elznn0nn 11718 elznn0 11719 nneo 11789 ltxr 12235 xrleloe 12263 xrrebnd 12287 xmullem2 12383 xmulcom 12384 xmulneg1 12387 xmulf 12390 sqeqori 13270 hashtpg 13556 odd2np1lem 15438 lcmcom 15679 dvdsprime 15772 coprm 15794 lvecvscan2 19471 opprdomn 19662 mplcoe1 19826 mplcoe5 19829 madutpos 20816 restntr 21357 alexsubALTlem2 22222 alexsubALTlem3 22223 xrsxmet 22982 dyaddisj 23762 mdegleb 24223 atandm3 25018 wilthlem2 25208 lgsdir2lem4 25466 tgcolg 25866 hlcomb 25915 axcontlem7 26269 elntg2 26284 nb3grprlem2 26679 vtxd0nedgb 26786 clwwlkneq0 27371 eupth2lem2 27596 eupth2lem3lem6 27610 numclwwlk3lem2lem 27798 hvmulcan2 28485 elat2 29754 chrelat2i 29779 atoml2i 29797 or3dir 29863 disjnf 29931 disjorf 29939 disjex 29952 disjexc 29953 disjunsn 29954 funcnv5mpt 30017 elicoelioo 30087 xrdifh 30089 tlt3 30210 orngsqr 30349 ballotlemfc0 31100 ballotlemfcc 31101 bnj563 31359 subfacp1lem6 31713 3orel2 32136 dfon2lem5 32230 noextenddif 32360 sleloe 32418 btwnconn1lem14 32746 outsideofcom 32774 outsideofeu 32777 lineunray 32793 ecase13d 32846 elicc3 32850 nn0prpw 32856 bj-dfbi5 33087 bj-consensusALT 33092 topdifinfeq 33743 onsucuni3 33760 wl-cases2-dnf 33840 itg2addnclem2 34005 itgaddnclem2 34012 orfa 34423 unitresl 34426 notornotel2 34439 tsbi4 34483 ineleq 34667 leatb 35367 leat2 35369 isat3 35382 hlrelat2 35478 elpadd0 35884 ifporcor 38648 ifpim2 38658 ifpim23g 38682 ifpim123g 38687 rp-fakeoranass 38701 elprn2 40661 stoweidlem26 41037 2reu3 42013 |
Copyright terms: Public domain | W3C validator |