| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orcom | Structured version Visualization version GIF version | ||
| Description: Commutative law for disjunction. Theorem *4.31 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 15-Nov-2012.) |
| Ref | Expression |
|---|---|
| orcom | ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm1.4 869 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (𝜓 ∨ 𝜑)) | |
| 2 | pm1.4 869 | . 2 ⊢ ((𝜓 ∨ 𝜑) → (𝜑 ∨ 𝜓)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) |
| Copyright terms: Public domain | W3C validator |