Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nic-ich | Structured version Visualization version GIF version |
Description: Chained inference. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nic-ich.1 | ⊢ (𝜑 ⊼ (𝜓 ⊼ 𝜓)) |
nic-ich.2 | ⊢ (𝜓 ⊼ (𝜒 ⊼ 𝜒)) |
Ref | Expression |
---|---|
nic-ich | ⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nic-ich.2 | . . 3 ⊢ (𝜓 ⊼ (𝜒 ⊼ 𝜒)) | |
2 | 1 | nic-isw1 1688 | . 2 ⊢ ((𝜒 ⊼ 𝜒) ⊼ 𝜓) |
3 | nic-ich.1 | . . 3 ⊢ (𝜑 ⊼ (𝜓 ⊼ 𝜓)) | |
4 | 3 | nic-imp 1683 | . 2 ⊢ (((𝜒 ⊼ 𝜒) ⊼ 𝜓) ⊼ ((𝜑 ⊼ (𝜒 ⊼ 𝜒)) ⊼ (𝜑 ⊼ (𝜒 ⊼ 𝜒)))) |
5 | 2, 4 | nic-mp 1679 | 1 ⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ⊼ wnan 1487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-nan 1488 |
This theorem is referenced by: nic-idbl 1694 nic-luk1 1699 |
Copyright terms: Public domain | W3C validator |