|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nic-ich | Structured version Visualization version GIF version | ||
| Description: Chained inference. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| nic-ich.1 | ⊢ (𝜑 ⊼ (𝜓 ⊼ 𝜓)) | 
| nic-ich.2 | ⊢ (𝜓 ⊼ (𝜒 ⊼ 𝜒)) | 
| Ref | Expression | 
|---|---|
| nic-ich | ⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nic-ich.2 | . . 3 ⊢ (𝜓 ⊼ (𝜒 ⊼ 𝜒)) | |
| 2 | 1 | nic-isw1 1679 | . 2 ⊢ ((𝜒 ⊼ 𝜒) ⊼ 𝜓) | 
| 3 | nic-ich.1 | . . 3 ⊢ (𝜑 ⊼ (𝜓 ⊼ 𝜓)) | |
| 4 | 3 | nic-imp 1674 | . 2 ⊢ (((𝜒 ⊼ 𝜒) ⊼ 𝜓) ⊼ ((𝜑 ⊼ (𝜒 ⊼ 𝜒)) ⊼ (𝜑 ⊼ (𝜒 ⊼ 𝜒)))) | 
| 5 | 2, 4 | nic-mp 1670 | 1 ⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ⊼ wnan 1490 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-nan 1491 | 
| This theorem is referenced by: nic-idbl 1685 nic-luk1 1690 | 
| Copyright terms: Public domain | W3C validator |