|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nic-isw1 | Structured version Visualization version GIF version | ||
| Description: Inference version of nic-swap 1679. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| nic-isw1.1 | ⊢ (𝜃 ⊼ 𝜑) | 
| Ref | Expression | 
|---|---|
| nic-isw1 | ⊢ (𝜑 ⊼ 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nic-isw1.1 | . 2 ⊢ (𝜃 ⊼ 𝜑) | |
| 2 | nic-swap 1679 | . 2 ⊢ ((𝜃 ⊼ 𝜑) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))) | |
| 3 | 1, 2 | nic-mp 1671 | 1 ⊢ (𝜑 ⊼ 𝜃) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ⊼ wnan 1491 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-nan 1492 | 
| This theorem is referenced by: nic-isw2 1681 nic-iimp1 1682 nic-iimp2 1683 nic-idel 1684 nic-ich 1685 nic-luk2 1692 | 
| Copyright terms: Public domain | W3C validator |