Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nic-isw1 | Structured version Visualization version GIF version |
Description: Inference version of nic-swap 1687. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nic-isw1.1 | ⊢ (𝜃 ⊼ 𝜑) |
Ref | Expression |
---|---|
nic-isw1 | ⊢ (𝜑 ⊼ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nic-isw1.1 | . 2 ⊢ (𝜃 ⊼ 𝜑) | |
2 | nic-swap 1687 | . 2 ⊢ ((𝜃 ⊼ 𝜑) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))) | |
3 | 1, 2 | nic-mp 1679 | 1 ⊢ (𝜑 ⊼ 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ⊼ wnan 1487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-nan 1488 |
This theorem is referenced by: nic-isw2 1689 nic-iimp1 1690 nic-iimp2 1691 nic-idel 1692 nic-ich 1693 nic-luk2 1700 |
Copyright terms: Public domain | W3C validator |