MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nic-isw1 Structured version   Visualization version   GIF version

Theorem nic-isw1 1683
Description: Inference version of nic-swap 1682. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
nic-isw1.1 (𝜃𝜑)
Assertion
Ref Expression
nic-isw1 (𝜑𝜃)

Proof of Theorem nic-isw1
StepHypRef Expression
1 nic-isw1.1 . 2 (𝜃𝜑)
2 nic-swap 1682 . 2 ((𝜃𝜑) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃)))
31, 2nic-mp 1674 1 (𝜑𝜃)
Colors of variables: wff setvar class
Syntax hints:  wnan 1486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-nan 1487
This theorem is referenced by:  nic-isw2  1684  nic-iimp1  1685  nic-iimp2  1686  nic-idel  1687  nic-ich  1688  nic-luk2  1695
  Copyright terms: Public domain W3C validator