|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nic-imp | Structured version Visualization version GIF version | ||
| Description: Inference for nic-mp 1670 using nic-ax 1672 as major premise. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| nic-imp.1 | ⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜓)) | 
| Ref | Expression | 
|---|---|
| nic-imp | ⊢ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nic-imp.1 | . 2 ⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜓)) | |
| 2 | nic-ax 1672 | . 2 ⊢ ((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ⊼ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) | |
| 3 | 1, 2 | nic-mp 1670 | 1 ⊢ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ⊼ wnan 1490 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-nan 1491 | 
| This theorem is referenced by: nic-idlem1 1675 nic-idlem2 1676 nic-isw2 1680 nic-iimp1 1681 nic-idel 1683 nic-ich 1684 nic-idbl 1685 nic-luk1 1690 | 
| Copyright terms: Public domain | W3C validator |