| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nic-idlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for nic-id 1678. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nic-idlem1 | ⊢ ((𝜃 ⊼ (𝜏 ⊼ (𝜏 ⊼ 𝜏))) ⊼ (((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ⊼ 𝜃) ⊼ ((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ⊼ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nic-ax 1673 | . 2 ⊢ ((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ⊼ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ⊼ ((𝜑 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜑) ⊼ (𝜑 ⊼ 𝜑))))) | |
| 2 | 1 | nic-imp 1675 | 1 ⊢ ((𝜃 ⊼ (𝜏 ⊼ (𝜏 ⊼ 𝜏))) ⊼ (((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ⊼ 𝜃) ⊼ ((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ⊼ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊼ wnan 1491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-nan 1492 |
| This theorem is referenced by: nic-id 1678 |
| Copyright terms: Public domain | W3C validator |