MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nic-ax Structured version   Visualization version   GIF version

Theorem nic-ax 1671
Description: Nicod's axiom derived from the standard ones. See Introduction to Mathematical Philosophy by B. Russell, p. 152. Like meredith 1639, the usual axioms can be derived from this and vice versa. Unlike meredith 1639, Nicod uses a different connective ('nand'), so another form of modus ponens must be used in proofs, e.g., { nic-ax 1671, nic-mp 1669 } is equivalent to { luk-1 1653, luk-2 1654, luk-3 1655, ax-mp 5 }. In a pure (standalone) treatment of Nicod's axiom, this theorem would be changed to an axiom ($a statement). (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nic-ax ((𝜑 ⊼ (𝜒𝜓)) ⊼ ((𝜏 ⊼ (𝜏𝜏)) ⊼ ((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃)))))

Proof of Theorem nic-ax
StepHypRef Expression
1 nannan 1494 . . . . 5 ((𝜑 ⊼ (𝜒𝜓)) ↔ (𝜑 → (𝜒𝜓)))
21biimpi 216 . . . 4 ((𝜑 ⊼ (𝜒𝜓)) → (𝜑 → (𝜒𝜓)))
3 simpl 482 . . . . 5 ((𝜒𝜓) → 𝜒)
43imim2i 16 . . . 4 ((𝜑 → (𝜒𝜓)) → (𝜑𝜒))
5 imnan 399 . . . . . . 7 ((𝜃 → ¬ 𝜒) ↔ ¬ (𝜃𝜒))
6 df-nan 1489 . . . . . . 7 ((𝜃𝜒) ↔ ¬ (𝜃𝜒))
75, 6bitr4i 278 . . . . . 6 ((𝜃 → ¬ 𝜒) ↔ (𝜃𝜒))
8 con3 153 . . . . . . . 8 ((𝜑𝜒) → (¬ 𝜒 → ¬ 𝜑))
98imim2d 57 . . . . . . 7 ((𝜑𝜒) → ((𝜃 → ¬ 𝜒) → (𝜃 → ¬ 𝜑)))
10 imnan 399 . . . . . . . 8 ((𝜑 → ¬ 𝜃) ↔ ¬ (𝜑𝜃))
11 con2b 359 . . . . . . . 8 ((𝜃 → ¬ 𝜑) ↔ (𝜑 → ¬ 𝜃))
12 df-nan 1489 . . . . . . . 8 ((𝜑𝜃) ↔ ¬ (𝜑𝜃))
1310, 11, 123bitr4ri 304 . . . . . . 7 ((𝜑𝜃) ↔ (𝜃 → ¬ 𝜑))
149, 13imbitrrdi 252 . . . . . 6 ((𝜑𝜒) → ((𝜃 → ¬ 𝜒) → (𝜑𝜃)))
157, 14biimtrrid 243 . . . . 5 ((𝜑𝜒) → ((𝜃𝜒) → (𝜑𝜃)))
16 nanim 1495 . . . . 5 (((𝜃𝜒) → (𝜑𝜃)) ↔ ((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃))))
1715, 16sylib 218 . . . 4 ((𝜑𝜒) → ((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃))))
182, 4, 173syl 18 . . 3 ((𝜑 ⊼ (𝜒𝜓)) → ((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃))))
19 pm4.24 563 . . . . 5 (𝜏 ↔ (𝜏𝜏))
2019biimpi 216 . . . 4 (𝜏 → (𝜏𝜏))
21 nannan 1494 . . . 4 ((𝜏 ⊼ (𝜏𝜏)) ↔ (𝜏 → (𝜏𝜏)))
2220, 21mpbir 231 . . 3 (𝜏 ⊼ (𝜏𝜏))
2318, 22jctil 519 . 2 ((𝜑 ⊼ (𝜒𝜓)) → ((𝜏 ⊼ (𝜏𝜏)) ∧ ((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃)))))
24 nannan 1494 . 2 (((𝜑 ⊼ (𝜒𝜓)) ⊼ ((𝜏 ⊼ (𝜏𝜏)) ⊼ ((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃))))) ↔ ((𝜑 ⊼ (𝜒𝜓)) → ((𝜏 ⊼ (𝜏𝜏)) ∧ ((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃))))))
2523, 24mpbir 231 1 ((𝜑 ⊼ (𝜒𝜓)) ⊼ ((𝜏 ⊼ (𝜏𝜏)) ⊼ ((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wnan 1488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-nan 1489
This theorem is referenced by:  nic-imp  1673  nic-idlem1  1674  nic-idlem2  1675  nic-id  1676  nic-swap  1677  nic-luk1  1689  lukshef-ax1  1692
  Copyright terms: Public domain W3C validator