|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nic-id | Structured version Visualization version GIF version | ||
| Description: Theorem id 22 expressed with ⊼. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| nic-id | ⊢ (𝜏 ⊼ (𝜏 ⊼ 𝜏)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nic-ax 1673 | . . 3 ⊢ ((𝜓 ⊼ (𝜓 ⊼ 𝜓)) ⊼ ((𝜃 ⊼ (𝜃 ⊼ 𝜃)) ⊼ ((𝜑 ⊼ 𝜓) ⊼ ((𝜓 ⊼ 𝜑) ⊼ (𝜓 ⊼ 𝜑))))) | |
| 2 | 1 | nic-idlem2 1677 | . 2 ⊢ ((((𝜑 ⊼ 𝜓) ⊼ ((𝜓 ⊼ 𝜑) ⊼ (𝜓 ⊼ 𝜑))) ⊼ (𝜒 ⊼ (𝜒 ⊼ 𝜒))) ⊼ (𝜓 ⊼ (𝜓 ⊼ 𝜓))) | 
| 3 | nic-idlem1 1676 | . . 3 ⊢ (((𝜒 ⊼ (𝜒 ⊼ 𝜒)) ⊼ (𝜏 ⊼ (𝜏 ⊼ 𝜏))) ⊼ ((((𝜑 ⊼ 𝜓) ⊼ ((𝜓 ⊼ 𝜑) ⊼ (𝜓 ⊼ 𝜑))) ⊼ (𝜒 ⊼ (𝜒 ⊼ 𝜒))) ⊼ (((𝜑 ⊼ 𝜓) ⊼ ((𝜓 ⊼ 𝜑) ⊼ (𝜓 ⊼ 𝜑))) ⊼ (𝜒 ⊼ (𝜒 ⊼ 𝜒))))) | |
| 4 | 3 | nic-idlem2 1677 | . 2 ⊢ (((((𝜑 ⊼ 𝜓) ⊼ ((𝜓 ⊼ 𝜑) ⊼ (𝜓 ⊼ 𝜑))) ⊼ (𝜒 ⊼ (𝜒 ⊼ 𝜒))) ⊼ (𝜓 ⊼ (𝜓 ⊼ 𝜓))) ⊼ ((𝜒 ⊼ (𝜒 ⊼ 𝜒)) ⊼ (𝜏 ⊼ (𝜏 ⊼ 𝜏)))) | 
| 5 | 2, 4 | nic-mp 1671 | 1 ⊢ (𝜏 ⊼ (𝜏 ⊼ 𝜏)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ⊼ wnan 1491 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-nan 1492 | 
| This theorem is referenced by: nic-swap 1679 nic-idel 1684 nic-bi1 1688 nic-bi2 1689 nic-luk2 1692 nic-luk3 1693 | 
| Copyright terms: Public domain | W3C validator |