![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nimnbi | Structured version Visualization version GIF version |
Description: If an implication is false, the biconditional is false. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
Ref | Expression |
---|---|
nimnbi.1 | ⊢ ¬ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
nimnbi | ⊢ ¬ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nimnbi.1 | . 2 ⊢ ¬ (𝜑 → 𝜓) | |
2 | biimp 214 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
3 | 1, 2 | mto 196 | 1 ⊢ ¬ (𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |