Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nimnbi2 Structured version   Visualization version   GIF version

Theorem nimnbi2 43844
Description: If an implication is false, the biconditional is false. (Contributed by Glauco Siliprandi, 15-Feb-2025.)
Hypothesis
Ref Expression
nimnbi2.1 ¬ (𝜓𝜑)
Assertion
Ref Expression
nimnbi2 ¬ (𝜑𝜓)

Proof of Theorem nimnbi2
StepHypRef Expression
1 nimnbi2.1 . 2 ¬ (𝜓𝜑)
2 biimpr 219 . 2 ((𝜑𝜓) → (𝜓𝜑))
31, 2mto 196 1 ¬ (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  rexanuz2nf  44189
  Copyright terms: Public domain W3C validator