| Metamath
Proof Explorer Theorem List (p. 446 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | 19.31vv 44501* | Theorem *11.44 in [WhiteheadRussell] p. 163. Theorem 19.31 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∀𝑥∀𝑦(𝜑 ∨ 𝜓) ↔ (∀𝑥∀𝑦𝜑 ∨ 𝜓)) | ||
| Theorem | 19.37vv 44502* | Theorem *11.46 in [WhiteheadRussell] p. 164. Theorem 19.37 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∃𝑥∃𝑦(𝜓 → 𝜑) ↔ (𝜓 → ∃𝑥∃𝑦𝜑)) | ||
| Theorem | 19.28vv 44503* | Theorem *11.47 in [WhiteheadRussell] p. 164. Theorem 19.28 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∀𝑥∀𝑦(𝜓 ∧ 𝜑) ↔ (𝜓 ∧ ∀𝑥∀𝑦𝜑)) | ||
| Theorem | pm11.52 44504 | Theorem *11.52 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ¬ ∀𝑥∀𝑦(𝜑 → ¬ 𝜓)) | ||
| Theorem | aaanv 44505* | Theorem *11.56 in [WhiteheadRussell] p. 165. Special case of aaan 2335. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ ((∀𝑥𝜑 ∧ ∀𝑦𝜓) ↔ ∀𝑥∀𝑦(𝜑 ∧ 𝜓)) | ||
| Theorem | pm11.57 44506* | Theorem *11.57 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∀𝑥𝜑 ↔ ∀𝑥∀𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑)) | ||
| Theorem | pm11.58 44507* | Theorem *11.58 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∃𝑥𝜑 ↔ ∃𝑥∃𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑)) | ||
| Theorem | pm11.59 44508* | Theorem *11.59 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 25-May-2011.) |
| ⊢ (∀𝑥(𝜑 → 𝜓) → ∀𝑦∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → (𝜓 ∧ [𝑦 / 𝑥]𝜓))) | ||
| Theorem | pm11.6 44509* | Theorem *11.6 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 25-May-2011.) |
| ⊢ (∃𝑥(∃𝑦(𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ∃𝑦(∃𝑥(𝜑 ∧ 𝜒) ∧ 𝜓)) | ||
| Theorem | pm11.61 44510* | Theorem *11.61 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∃𝑦∀𝑥(𝜑 → 𝜓) → ∀𝑥(𝜑 → ∃𝑦𝜓)) | ||
| Theorem | pm11.62 44511* | Theorem *11.62 in [WhiteheadRussell] p. 166. Importation combined with the rearrangement with quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝜒) ↔ ∀𝑥(𝜑 → ∀𝑦(𝜓 → 𝜒))) | ||
| Theorem | pm11.63 44512 | Theorem *11.63 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (¬ ∃𝑥∃𝑦𝜑 → ∀𝑥∀𝑦(𝜑 → 𝜓)) | ||
| Theorem | pm11.7 44513 | Theorem *11.7 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∃𝑥∃𝑦(𝜑 ∨ 𝜑) ↔ ∃𝑥∃𝑦𝜑) | ||
| Theorem | pm11.71 44514* | Theorem *11.71 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ ((∃𝑥𝜑 ∧ ∃𝑦𝜒) → ((∀𝑥(𝜑 → 𝜓) ∧ ∀𝑦(𝜒 → 𝜃)) ↔ ∀𝑥∀𝑦((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜃)))) | ||
| Theorem | sbeqal1 44515* | If 𝑥 = 𝑦 always implies 𝑥 = 𝑧, then 𝑦 = 𝑧. (Contributed by Andrew Salmon, 2-Jun-2011.) |
| ⊢ (∀𝑥(𝑥 = 𝑦 → 𝑥 = 𝑧) → 𝑦 = 𝑧) | ||
| Theorem | sbeqal1i 44516* | Suppose you know 𝑥 = 𝑦 implies 𝑥 = 𝑧, assuming 𝑥 and 𝑧 are distinct. Then, 𝑦 = 𝑧. (Contributed by Andrew Salmon, 3-Jun-2011.) |
| ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑧) ⇒ ⊢ 𝑦 = 𝑧 | ||
| Theorem | sbeqal2i 44517* | If 𝑥 = 𝑦 implies 𝑥 = 𝑧, then we can infer 𝑧 = 𝑦. (Contributed by Andrew Salmon, 3-Jun-2011.) |
| ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑧) ⇒ ⊢ 𝑧 = 𝑦 | ||
| Theorem | axc5c4c711 44518 | Proof of a theorem that can act as a sole axiom for pure predicate calculus with ax-gen 1796 as the inference rule. This proof extends the idea of axc5c711 39037 and related theorems. (Contributed by Andrew Salmon, 14-Jul-2011.) |
| ⊢ ((∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦(∀𝑦𝜑 → 𝜓) → (𝜑 → ∀𝑦(∀𝑦𝜑 → 𝜓))) → (∀𝑦𝜑 → ∀𝑦𝜓)) | ||
| Theorem | axc5c4c711toc5 44519 | Rederivation of sp 2188 from axc5c4c711 44518. Note that ax6 2386 is used for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) Revised to use ax6v 1969 instead of ax6 2386, so that this rederivation requires only ax6v 1969 and propositional calculus. (Revised by BJ, 14-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑥𝜑 → 𝜑) | ||
| Theorem | axc5c4c711toc4 44520 | Rederivation of axc4 2324 from axc5c4c711 44518. Note that only propositional calculus is required for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | ||
| Theorem | axc5c4c711toc7 44521 | Rederivation of axc7 2320 from axc5c4c711 44518. Note that neither axc7 2320 nor ax-11 2162 are required for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → 𝜑) | ||
| Theorem | axc5c4c711to11 44522 | Rederivation of ax-11 2162 from axc5c4c711 44518. Note that ax-11 2162 is not required for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | ||
| Theorem | axc11next 44523* | This theorem shows that, given axextb 2708, we can derive a version of axc11n 2428. However, it is weaker than axc11n 2428 because it has a distinct variable requirement. (Contributed by Andrew Salmon, 16-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑧 → ∀𝑧 𝑧 = 𝑥) | ||
| Theorem | pm13.13a 44524 | One result of theorem *13.13 in [WhiteheadRussell] p. 178. A note on the section - to make the theorems more usable, and because inequality is notation for set theory (it is not defined in the predicate calculus section), this section will use classes instead of sets. (Contributed by Andrew Salmon, 3-Jun-2011.) |
| ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → [𝐴 / 𝑥]𝜑) | ||
| Theorem | pm13.13b 44525 | Theorem *13.13 in [WhiteheadRussell] p. 178 with different variable substitution. (Contributed by Andrew Salmon, 3-Jun-2011.) |
| ⊢ (([𝐴 / 𝑥]𝜑 ∧ 𝑥 = 𝐴) → 𝜑) | ||
| Theorem | pm13.14 44526 | Theorem *13.14 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.) |
| ⊢ (([𝐴 / 𝑥]𝜑 ∧ ¬ 𝜑) → 𝑥 ≠ 𝐴) | ||
| Theorem | pm13.192 44527* | Theorem *13.192 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) (Revised by NM, 4-Jan-2017.) |
| ⊢ (∃𝑦(∀𝑥(𝑥 = 𝐴 ↔ 𝑥 = 𝑦) ∧ 𝜑) ↔ [𝐴 / 𝑦]𝜑) | ||
| Theorem | pm13.193 44528 | Theorem *13.193 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) |
| ⊢ ((𝜑 ∧ 𝑥 = 𝑦) ↔ ([𝑦 / 𝑥]𝜑 ∧ 𝑥 = 𝑦)) | ||
| Theorem | pm13.194 44529 | Theorem *13.194 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) |
| ⊢ ((𝜑 ∧ 𝑥 = 𝑦) ↔ ([𝑦 / 𝑥]𝜑 ∧ 𝜑 ∧ 𝑥 = 𝑦)) | ||
| Theorem | pm13.195 44530* | Theorem *13.195 in [WhiteheadRussell] p. 179. This theorem is very similar to sbc5 3765. (Contributed by Andrew Salmon, 3-Jun-2011.) (Revised by NM, 4-Jan-2017.) |
| ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) ↔ [𝐴 / 𝑦]𝜑) | ||
| Theorem | pm13.196a 44531* | Theorem *13.196 in [WhiteheadRussell] p. 179. The only difference is the position of the substituted variable. (Contributed by Andrew Salmon, 3-Jun-2011.) |
| ⊢ (¬ 𝜑 ↔ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑦 ≠ 𝑥)) | ||
| Theorem | 2sbc6g 44532* | Theorem *13.21 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑧∀𝑤((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑)) | ||
| Theorem | 2sbc5g 44533* | Theorem *13.22 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∃𝑧∃𝑤((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) ∧ 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑)) | ||
| Theorem | iotain 44534 | Equivalence between two different forms of ℩. (Contributed by Andrew Salmon, 15-Jul-2011.) |
| ⊢ (∃!𝑥𝜑 → ∩ {𝑥 ∣ 𝜑} = (℩𝑥𝜑)) | ||
| Theorem | iotaexeu 44535 | The iota class exists. This theorem does not require ax-nul 5246 for its proof. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) | ||
| Theorem | iotasbc 44536* | Definition *14.01 in [WhiteheadRussell] p. 184. In Principia Mathematica, Russell and Whitehead define ℩ in terms of a function of (℩𝑥𝜑). Their definition differs in that a function of (℩𝑥𝜑) evaluates to "false" when there isn't a single 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| ⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝜓))) | ||
| Theorem | iotasbc2 44537* | Theorem *14.111 in [WhiteheadRussell] p. 184. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓) → ([(℩𝑥𝜑) / 𝑦][(℩𝑥𝜓) / 𝑧]𝜒 ↔ ∃𝑦∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) | ||
| Theorem | pm14.12 44538* | Theorem *14.12 in [WhiteheadRussell] p. 184. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| ⊢ (∃!𝑥𝜑 → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | ||
| Theorem | pm14.122a 44539* | Theorem *14.122 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ↔ (∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ [𝐴 / 𝑥]𝜑))) | ||
| Theorem | pm14.122b 44540* | Theorem *14.122 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → ((∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ [𝐴 / 𝑥]𝜑) ↔ (∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ ∃𝑥𝜑))) | ||
| Theorem | pm14.122c 44541* | Theorem *14.122 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ↔ (∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ ∃𝑥𝜑))) | ||
| Theorem | pm14.123a 44542* | Theorem *14.123 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑧∀𝑤(𝜑 ↔ (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ↔ (∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ∧ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑))) | ||
| Theorem | pm14.123b 44543* | Theorem *14.123 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ∧ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑) ↔ (∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ∧ ∃𝑧∃𝑤𝜑))) | ||
| Theorem | pm14.123c 44544* | Theorem *14.123 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑧∀𝑤(𝜑 ↔ (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ↔ (∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ∧ ∃𝑧∃𝑤𝜑))) | ||
| Theorem | pm14.18 44545 | Theorem *14.18 in [WhiteheadRussell] p. 189. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| ⊢ (∃!𝑥𝜑 → (∀𝑥𝜓 → [(℩𝑥𝜑) / 𝑥]𝜓)) | ||
| Theorem | iotaequ 44546* | Theorem *14.2 in [WhiteheadRussell] p. 189. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| ⊢ (℩𝑥𝑥 = 𝑦) = 𝑦 | ||
| Theorem | iotavalb 44547* | Theorem *14.202 in [WhiteheadRussell] p. 189. A biconditional version of iotaval 6460. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| ⊢ (∃!𝑥𝜑 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (℩𝑥𝜑) = 𝑦)) | ||
| Theorem | iotasbc5 44548* | Theorem *14.205 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| ⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ 𝜓))) | ||
| Theorem | pm14.24 44549* | Theorem *14.24 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.) |
| ⊢ (∃!𝑥𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = (℩𝑥𝜑))) | ||
| Theorem | iotavalsb 44550* | Theorem *14.242 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ([𝑦 / 𝑧]𝜓 ↔ [(℩𝑥𝜑) / 𝑧]𝜓)) | ||
| Theorem | sbiota1 44551 | Theorem *14.25 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 12-Jul-2011.) |
| ⊢ (∃!𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ [(℩𝑥𝜑) / 𝑥]𝜓)) | ||
| Theorem | sbaniota 44552 | Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 12-Jul-2011.) |
| ⊢ (∃!𝑥𝜑 → (∃𝑥(𝜑 ∧ 𝜓) ↔ [(℩𝑥𝜑) / 𝑥]𝜓)) | ||
| Theorem | iotasbcq 44553 | Theorem *14.272 in [WhiteheadRussell] p. 193. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([(℩𝑥𝜑) / 𝑦]𝜒 ↔ [(℩𝑥𝜓) / 𝑦]𝜒)) | ||
| Theorem | elnev 44554* | Any set that contains one element less than the universe is not equal to it. (Contributed by Andrew Salmon, 16-Jun-2011.) |
| ⊢ (𝐴 ∈ V ↔ {𝑥 ∣ ¬ 𝑥 = 𝐴} ≠ V) | ||
| Theorem | rusbcALT 44555 | A version of Russell's paradox which is proven using proper substitution. (Contributed by Andrew Salmon, 18-Jun-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V | ||
| Theorem | compeq 44556* | Equality between two ways of saying "the complement of 𝐴". (Contributed by Andrew Salmon, 15-Jul-2011.) |
| ⊢ (V ∖ 𝐴) = {𝑥 ∣ ¬ 𝑥 ∈ 𝐴} | ||
| Theorem | compne 44557 | The complement of 𝐴 is not equal to 𝐴. (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by BJ, 11-Nov-2021.) |
| ⊢ (V ∖ 𝐴) ≠ 𝐴 | ||
| Theorem | compab 44558 | Two ways of saying "the complement of a class abstraction". (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
| ⊢ (V ∖ {𝑧 ∣ 𝜑}) = {𝑧 ∣ ¬ 𝜑} | ||
| Theorem | conss2 44559 | Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011.) |
| ⊢ (𝐴 ⊆ (V ∖ 𝐵) ↔ 𝐵 ⊆ (V ∖ 𝐴)) | ||
| Theorem | conss1 44560 | Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011.) |
| ⊢ ((V ∖ 𝐴) ⊆ 𝐵 ↔ (V ∖ 𝐵) ⊆ 𝐴) | ||
| Theorem | ralbidar 44561 | More general form of ralbida 3244. (Contributed by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜑) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
| Theorem | rexbidar 44562 | More general form of rexbida 3245. (Contributed by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜑) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) | ||
| Theorem | dropab1 44563 | Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → {〈𝑥, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ 𝜑}) | ||
| Theorem | dropab2 44564 | Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → {〈𝑧, 𝑥〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜑}) | ||
| Theorem | ipo0 44565 | If the identity relation partially orders any class, then that class is the null class. (Contributed by Andrew Salmon, 25-Jul-2011.) |
| ⊢ ( I Po 𝐴 ↔ 𝐴 = ∅) | ||
| Theorem | ifr0 44566 | A class that is founded by the identity relation is null. (Contributed by Andrew Salmon, 25-Jul-2011.) |
| ⊢ ( I Fr 𝐴 ↔ 𝐴 = ∅) | ||
| Theorem | ordpss 44567 | ordelpss 6339 with an antecedent removed. (Contributed by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ⊊ 𝐵)) | ||
| Theorem | fvsb 44568* | Explicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.) |
| ⊢ (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) | ||
| Theorem | fveqsb 44569* | Implicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.) |
| ⊢ (𝑥 = (𝐹‘𝐴) → (𝜑 ↔ 𝜓)) & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝜓 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) | ||
| Theorem | xpexb 44570 | A Cartesian product exists iff its converse does. Corollary 6.9(1) in [TakeutiZaring] p. 26. (Contributed by Andrew Salmon, 13-Nov-2011.) |
| ⊢ ((𝐴 × 𝐵) ∈ V ↔ (𝐵 × 𝐴) ∈ V) | ||
| Theorem | trelpss 44571 | An element of a transitive set is a proper subset of it. Theorem 7.2 in [TakeutiZaring] p. 35. Unlike tz7.2 5602, ax-reg 9485 is required for its proof. (Contributed by Andrew Salmon, 13-Nov-2011.) |
| ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊊ 𝐴) | ||
| Theorem | addcomgi 44572 | Generalization of commutative law for addition. Simplifies proofs dealing with vectors. However, it is dependent on our particular definition of ordered pair. (Contributed by Andrew Salmon, 28-Jan-2012.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝐴 + 𝐵) = (𝐵 + 𝐴) | ||
| Syntax | cplusr 44573 | Introduce the operation of vector addition. |
| class +𝑟 | ||
| Syntax | cminusr 44574 | Introduce the operation of vector subtraction. |
| class -𝑟 | ||
| Syntax | ctimesr 44575 | Introduce the operation of scalar multiplication. |
| class .𝑣 | ||
| Syntax | cptdfc 44576 | PtDf is a predicate that is crucial for the definition of lines as well as proving a number of important theorems. |
| class PtDf(𝐴, 𝐵) | ||
| Syntax | crr3c 44577 | RR3 is a class. |
| class RR3 | ||
| Syntax | cline3 44578 | line3 is a class. |
| class line3 | ||
| Definition | df-addr 44579* | Define the operation of vector addition. (Contributed by Andrew Salmon, 27-Jan-2012.) |
| ⊢ +𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥‘𝑣) + (𝑦‘𝑣)))) | ||
| Definition | df-subr 44580* | Define the operation of vector subtraction. (Contributed by Andrew Salmon, 27-Jan-2012.) |
| ⊢ -𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥‘𝑣) − (𝑦‘𝑣)))) | ||
| Definition | df-mulv 44581* | Define the operation of scalar multiplication. (Contributed by Andrew Salmon, 27-Jan-2012.) |
| ⊢ .𝑣 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ (𝑥 · (𝑦‘𝑣)))) | ||
| Theorem | addrval 44582* | Value of the operation of vector addition. (Contributed by Andrew Salmon, 27-Jan-2012.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴‘𝑣) + (𝐵‘𝑣)))) | ||
| Theorem | subrval 44583* | Value of the operation of vector subtraction. (Contributed by Andrew Salmon, 27-Jan-2012.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴-𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴‘𝑣) − (𝐵‘𝑣)))) | ||
| Theorem | mulvval 44584* | Value of the operation of scalar multiplication. (Contributed by Andrew Salmon, 27-Jan-2012.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) = (𝑣 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑣)))) | ||
| Theorem | addrfv 44585 | Vector addition at a value. The operation takes each vector 𝐴 and 𝐵 and forms a new vector whose values are the sum of each of the values of 𝐴 and 𝐵. (Contributed by Andrew Salmon, 27-Jan-2012.) |
| ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝐶) = ((𝐴‘𝐶) + (𝐵‘𝐶))) | ||
| Theorem | subrfv 44586 | Vector subtraction at a value. (Contributed by Andrew Salmon, 27-Jan-2012.) |
| ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴-𝑟𝐵)‘𝐶) = ((𝐴‘𝐶) − (𝐵‘𝐶))) | ||
| Theorem | mulvfv 44587 | Scalar multiplication at a value. (Contributed by Andrew Salmon, 27-Jan-2012.) |
| ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴.𝑣𝐵)‘𝐶) = (𝐴 · (𝐵‘𝐶))) | ||
| Theorem | addrfn 44588 | Vector addition produces a function. (Contributed by Andrew Salmon, 27-Jan-2012.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) Fn ℝ) | ||
| Theorem | subrfn 44589 | Vector subtraction produces a function. (Contributed by Andrew Salmon, 27-Jan-2012.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴-𝑟𝐵) Fn ℝ) | ||
| Theorem | mulvfn 44590 | Scalar multiplication producees a function. (Contributed by Andrew Salmon, 27-Jan-2012.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) Fn ℝ) | ||
| Theorem | addrcom 44591 | Vector addition is commutative. (Contributed by Andrew Salmon, 28-Jan-2012.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) = (𝐵+𝑟𝐴)) | ||
| Definition | df-ptdf 44592* | Define the predicate PtDf, which is a utility definition used to shorten definitions and simplify proofs. (Contributed by Andrew Salmon, 15-Jul-2012.) |
| ⊢ PtDf(𝐴, 𝐵) = (𝑥 ∈ ℝ ↦ (((𝑥.𝑣(𝐵-𝑟𝐴)) +𝑣 𝐴) “ {1, 2, 3})) | ||
| Definition | df-rr3 44593 | Define the set of all points RR3. We define each point 𝐴 as a function to allow the use of vector addition and subtraction as well as scalar multiplication in our proofs. (Contributed by Andrew Salmon, 15-Jul-2012.) |
| ⊢ RR3 = (ℝ ↑m {1, 2, 3}) | ||
| Definition | df-line3 44594* | Define the set of all lines. A line is an infinite subset of RR3 that satisfies a PtDf property. (Contributed by Andrew Salmon, 15-Jul-2012.) |
| ⊢ line3 = {𝑥 ∈ 𝒫 RR3 ∣ (2o ≼ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑧 ≠ 𝑦 → ran PtDf(𝑦, 𝑧) = 𝑥))} | ||
We are sad to report the passing of long-time contributor Alan Sare (Nov. 9, 1954 - Mar. 23, 2019). Alan's first contribution to Metamath was a shorter proof for tfrlem8 8309 in 2008. He developed a tool called "completeusersproof" that assists developing proofs using his "virtual deduction" method: https://us.metamath.org/other.html#completeusersproof 8309. His virtual deduction method is explained in the comment for wvd1 44686. Below are some excerpts from his first emails to NM in 2007: ...I have been interested in proving set theory theorems for many years for mental exercise. I enjoy it. I have used a book by Martin Zuckerman. It is informal. I am interested in completely and perfectly proving theorems. Mr. Zuckerman leaves out most of the steps of a proof, of course, like most authors do, as you have noted. A complete proof for higher theorems would require a volume of writing similar to the Metamath documents. So I am frustrated when I am not capable of constructing a proof and Zuckerman leaves out steps I do not understand. I could search for the steps in other texts, but I don't do that too much. Metamath may be the answer for me.... ...If we go beyond mathematics, I believe that it is possible to write down all human knowledge in a way similar to the way you have explicated large areas of mathematics. Of course, that would be a much, much more difficult job. For example, it is possible to take a hard science like physics, construct axioms based on experimental results, and to cast all of physics into a collection of axioms and theorems. Maybe this has already been attempted, although I am not familiar with it. When one then moves on to the soft sciences such as social science, this job gets much more difficult. The key is: All human thought consists of logical operations on abstract objects. Usually, these logical operations are done informally. There is no reason why one cannot take any subject and explicate it and take it down to the indivisible postulates in a formal rigorous way.... ...When I read a math book or an engineering book I come across something I don't understand and I am compelled to understand it. But, often it is hopeless. I don't have the time. Or, I would have to read the same thing by multiple authors in the hope that different authors would give parts of the working proof that others have omitted. It is very inefficient. Because I have always been inclined to "get to the bottom" for a 100% fully understood proof.... | ||
| Theorem | idiALT 44595 | Placeholder for idi 1. Though unnecessary, this theorem is sometimes used in proofs in this mathbox for pedagogical purposes. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 ⇒ ⊢ 𝜑 | ||
| Theorem | exbir 44596 | Exportation implication also converting the consequent from a biconditional to an implication. Derived automatically from exbirVD 44969. (Contributed by Alan Sare, 31-Dec-2011.) |
| ⊢ (((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) → (𝜑 → (𝜓 → (𝜃 → 𝜒)))) | ||
| Theorem | 3impexpbicom 44597 | Version of 3impexp 1359 where in addition the consequent is commuted. (Contributed by Alan Sare, 31-Dec-2011.) |
| ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))) | ||
| Theorem | 3impexpbicomi 44598 | Inference associated with 3impexpbicom 44597. Derived automatically from 3impexpbicomiVD 44974. (Contributed by Alan Sare, 31-Dec-2011.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) | ||
| Theorem | bi1imp 44599 | Importation inference similar to imp 406, except the outermost implication of the hypothesis is a biconditional. (Contributed by Alan Sare, 6-Nov-2017.) |
| ⊢ (𝜑 ↔ (𝜓 → 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
| Theorem | bi2imp 44600 | Importation inference similar to imp 406, except both implications of the hypothesis are biconditionals. (Contributed by Alan Sare, 6-Nov-2017.) |
| ⊢ (𝜑 ↔ (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |