Home | Metamath
Proof Explorer Theorem List (p. 446 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29274) |
Hilbert Space Explorer
(29275-30797) |
Users' Mathboxes
(30798-46480) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | fnresfnco 44501 | Composition of two functions, similar to fnco 6546. (Contributed by Alexander van der Vekens, 25-Jul-2017.) |
⊢ (((𝐹 ↾ ran 𝐺) Fn ran 𝐺 ∧ 𝐺 Fn 𝐵) → (𝐹 ∘ 𝐺) Fn 𝐵) | ||
Theorem | funcoressn 44502 | A composition restricted to a singleton is a function under certain conditions. (Contributed by Alexander van der Vekens, 25-Jul-2017.) |
⊢ ((((𝐺‘𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺‘𝑋)})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) | ||
Theorem | funressnfv 44503 | A restriction to a singleton with a function value is a function under certain conditions. (Contributed by Alexander van der Vekens, 25-Jul-2017.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → Fun (𝐹 ↾ {(𝐺‘𝑋)})) | ||
Theorem | funressndmfvrn 44504 | The value of a function 𝐹 at a set 𝐴 is in the range of the function 𝐹 if 𝐴 is in the domain of the function 𝐹. It is sufficient that 𝐹 is a function at 𝐴. (Contributed by AV, 1-Sep-2022.) |
⊢ ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) | ||
Theorem | funressnvmo 44505* | A function restricted to a singleton has at most one value for the singleton element as argument. (Contributed by AV, 2-Sep-2022.) |
⊢ (Fun (𝐹 ↾ {𝑥}) → ∃*𝑦 𝑥𝐹𝑦) | ||
Theorem | funressnmo 44506* | A function restricted to a singleton has at most one value for the singleton element as argument. (Contributed by AV, 2-Sep-2022.) |
⊢ ((𝐴 ∈ 𝑉 ∧ Fun (𝐹 ↾ {𝐴})) → ∃*𝑦 𝐴𝐹𝑦) | ||
Theorem | funressneu 44507* | There is exactly one value of a class which is a function restricted to a singleton, analogous to funeu 6456. 𝐴 ∈ V is required because otherwise ∃!𝑦𝐴𝐹𝑦, see brprcneu 6760. (Contributed by AV, 7-Sep-2022.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦) | ||
Theorem | fresfo 44508 | Conditions for a restriction to be an onto function. Part of fresf1o 30960. (Contributed by AV, 29-Sep-2024.) |
⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–onto→𝐶) | ||
Theorem | fsetsniunop 44509* | The class of all functions from a (proper) singleton into 𝐵 is the union of all the singletons of (proper) ordered pairs over the elements of 𝐵 as second component. (Contributed by AV, 13-Sep-2024.) |
⊢ (𝑆 ∈ 𝑉 → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} = ∪ 𝑏 ∈ 𝐵 {{〈𝑆, 𝑏〉}}) | ||
Theorem | fsetabsnop 44510* | The class of all functions from a (proper) singleton into 𝐵 is the class of all the singletons of (proper) ordered pairs over the elements of 𝐵 as second component. (Contributed by AV, 13-Sep-2024.) |
⊢ (𝑆 ∈ 𝑉 → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}}) | ||
Theorem | fsetsnf 44511* | The mapping of an element of a class to a singleton function is a function. (Contributed by AV, 13-Sep-2024.) |
⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵⟶𝐴) | ||
Theorem | fsetsnf1 44512* | The mapping of an element of a class to a singleton function is an injection. (Contributed by AV, 13-Sep-2024.) |
⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵–1-1→𝐴) | ||
Theorem | fsetsnfo 44513* | The mapping of an element of a class to a singleton function is a surjection. (Contributed by AV, 13-Sep-2024.) |
⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵–onto→𝐴) | ||
Theorem | fsetsnf1o 44514* | The mapping of an element of a class to a singleton function is a bijection. (Contributed by AV, 13-Sep-2024.) |
⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵–1-1-onto→𝐴) | ||
Theorem | fsetsnprcnex 44515* | The class of all functions from a (proper) singleton into a proper class 𝐵 is not a set. (Contributed by AV, 13-Sep-2024.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} ∉ V) | ||
Theorem | cfsetssfset 44516 | The class of constant functions is a subclass of the class of functions. (Contributed by AV, 13-Sep-2024.) |
⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} ⇒ ⊢ 𝐹 ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} | ||
Theorem | cfsetsnfsetfv 44517* | The function value of the mapping of the class of singleton functions into the class of constant functions. (Contributed by AV, 13-Sep-2024.) |
⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} & ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} & ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → (𝐻‘𝑋) = (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌))) | ||
Theorem | cfsetsnfsetf 44518* | The mapping of the class of singleton functions into the class of constant functions is a function. (Contributed by AV, 14-Sep-2024.) |
⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} & ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} & ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐻:𝐺⟶𝐹) | ||
Theorem | cfsetsnfsetf1 44519* | The mapping of the class of singleton functions into the class of constant functions is an injection. (Contributed by AV, 14-Sep-2024.) |
⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} & ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} & ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐻:𝐺–1-1→𝐹) | ||
Theorem | cfsetsnfsetfo 44520* | The mapping of the class of singleton functions into the class of constant functions is a surjection. (Contributed by AV, 14-Sep-2024.) |
⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} & ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} & ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐻:𝐺–onto→𝐹) | ||
Theorem | cfsetsnfsetf1o 44521* | The mapping of the class of singleton functions into the class of constant functions is a bijection. (Contributed by AV, 14-Sep-2024.) |
⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} & ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} & ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐻:𝐺–1-1-onto→𝐹) | ||
Theorem | fsetprcnexALT 44522* | First version of proof for fsetprcnex 8631, which was much more complicated. (Contributed by AV, 14-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V) | ||
Theorem | fcoreslem1 44523 | Lemma 1 for fcores 44527. (Contributed by AV, 17-Sep-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) ⇒ ⊢ (𝜑 → 𝑃 = (◡𝐹 “ 𝐸)) | ||
Theorem | fcoreslem2 44524 | Lemma 2 for fcores 44527. (Contributed by AV, 17-Sep-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) ⇒ ⊢ (𝜑 → ran 𝑋 = 𝐸) | ||
Theorem | fcoreslem3 44525 | Lemma 3 for fcores 44527. (Contributed by AV, 13-Sep-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) ⇒ ⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) | ||
Theorem | fcoreslem4 44526 | Lemma 4 for fcores 44527. (Contributed by AV, 17-Sep-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) ⇒ ⊢ (𝜑 → (𝑌 ∘ 𝑋) Fn 𝑃) | ||
Theorem | fcores 44527 | Every composite function (𝐺 ∘ 𝐹) can be written as composition of restrictions of the composed functions (to their minimum domains). (Contributed by GL and AV, 17-Sep-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋)) | ||
Theorem | fcoresf1lem 44528 | Lemma for fcoresf1 44529. (Contributed by AV, 18-Sep-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) ⇒ ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → ((𝐺 ∘ 𝐹)‘𝑍) = (𝑌‘(𝑋‘𝑍))) | ||
Theorem | fcoresf1 44529 | If a composition is injective, then the restrictions of its components to the minimum domains are injective. (Contributed by GL and AV, 18-Sep-2024.) (Revised by AV, 7-Oct-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) & ⊢ (𝜑 → (𝐺 ∘ 𝐹):𝑃–1-1→𝐷) ⇒ ⊢ (𝜑 → (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷)) | ||
Theorem | fcoresf1b 44530 | A composition is injective iff the restrictions of its components to the minimum domains are injective. (Contributed by GL and AV, 7-Oct-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) ⇒ ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷))) | ||
Theorem | fcoresfo 44531 | If a composition is surjective, then the restriction of its first component to the minimum domain is surjective. (Contributed by AV, 17-Sep-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) & ⊢ (𝜑 → (𝐺 ∘ 𝐹):𝑃–onto→𝐷) ⇒ ⊢ (𝜑 → 𝑌:𝐸–onto→𝐷) | ||
Theorem | fcoresfob 44532 | A composition is surjective iff the restriction of its first component to the minimum domain is surjective. (Contributed by GL and AV, 7-Oct-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) ⇒ ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–onto→𝐷 ↔ 𝑌:𝐸–onto→𝐷)) | ||
Theorem | fcoresf1ob 44533 | A composition is bijective iff the restriction of its first component to the minimum domain is bijective and the restriction of its second component to the minimum domain is injective. (Contributed by GL and AV, 7-Oct-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) ⇒ ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1-onto→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1-onto→𝐷))) | ||
Theorem | f1cof1blem 44534 | Lemma for f1cof1b 44535 and focofob 44538. (Contributed by AV, 18-Sep-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) & ⊢ (𝜑 → ran 𝐹 = 𝐶) ⇒ ⊢ (𝜑 → ((𝑃 = 𝐴 ∧ 𝐸 = 𝐶) ∧ (𝑋 = 𝐹 ∧ 𝑌 = 𝐺))) | ||
Theorem | f1cof1b 44535 | If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺 ∘ 𝐹) is injective iff 𝐹 and 𝐺 are both injective. (Contributed by GL and AV, 19-Sep-2024.) |
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐶–1-1→𝐷))) | ||
Theorem | funfocofob 44536 | If the domain of a function 𝐺 is a subset of the range of a function 𝐹, then the composition (𝐺 ∘ 𝐹) is surjective iff 𝐺 is surjective. (Contributed by GL and AV, 29-Sep-2024.) |
⊢ ((Fun 𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → ((𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵 ↔ 𝐺:𝐴–onto→𝐵)) | ||
Theorem | fnfocofob 44537 | If the domain of a function 𝐺 equals the range of a function 𝐹, then the composition (𝐺 ∘ 𝐹) is surjective iff 𝐺 is surjective. (Contributed by GL and AV, 29-Sep-2024.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) | ||
Theorem | focofob 44538 | If the domain of a function 𝐺 equals the range of a function 𝐹, then the composition (𝐺 ∘ 𝐹) is surjective iff 𝐺 and 𝐹 as function to the domain of 𝐺 are both surjective. Symmetric version of fnfocofob 44537 including the fact that 𝐹 is a surjection onto its range. (Contributed by GL and AV, 20-Sep-2024.) (Proof shortened by AV, 29-Sep-2024.) |
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐷 ↔ (𝐹:𝐴–onto→𝐶 ∧ 𝐺:𝐶–onto→𝐷))) | ||
Theorem | f1ocof1ob 44539 | If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺 ∘ 𝐹) is bijective iff 𝐹 and 𝐺 are both bijective. (Contributed by GL and AV, 7-Oct-2024.) |
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷))) | ||
Theorem | f1ocof1ob2 44540 | If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺 ∘ 𝐹) is bijective iff 𝐹 and 𝐺 are both bijective. Symmetric version of f1ocof1ob 44539 including the fact that 𝐹 is a surjection onto its range. (Contributed by GL and AV, 20-Sep-2024.) (Proof shortened by AV, 7-Oct-2024.) |
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1-onto→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷))) | ||
Syntax | caiota 44541 | Extend class notation with an alternative for Russell's definition of a description binder (inverted iota). |
class (℩'𝑥𝜑) | ||
Theorem | aiotajust 44542* | Soundness justification theorem for df-aiota 44543. (Contributed by AV, 24-Aug-2022.) |
⊢ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = ∩ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} | ||
Definition | df-aiota 44543* |
Alternate version of Russell's definition of a description binder, which
can be read as "the unique 𝑥 such that 𝜑", where 𝜑
ordinarily contains 𝑥 as a free variable. Our definition
is
meaningful only when there is exactly one 𝑥 such that 𝜑 is true
(see aiotaval 44553); otherwise, it is not a set (see aiotaexb 44547), or even
more concrete, it is the universe V (see aiotavb 44548). Since this
is an alternative for df-iota 6389, we call this symbol ℩'
alternate iota in the following.
The advantage of this definition is the clear distinguishability of the defined and undefined cases: the alternate iota over a wff is defined iff it is a set (see aiotaexb 44547). With the original definition, there is no corresponding theorem (∃!𝑥𝜑 ↔ (℩𝑥𝜑) ≠ ∅), because ∅ can be a valid unique set satisfying a wff (see, for example, iota0def 44498). Only the right to left implication would hold, see (negated) iotanul 6409. For defined cases, however, both definitions df-iota 6389 and df-aiota 44543 are equivalent, see reuaiotaiota 44546. (Proposed by BJ, 13-Aug-2022.) (Contributed by AV, 24-Aug-2022.) |
⊢ (℩'𝑥𝜑) = ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | ||
Theorem | dfaiota2 44544* | Alternate definition of the alternate version of Russell's definition of a description binder. Definition 8.18 in [Quine] p. 56. (Contributed by AV, 24-Aug-2022.) |
⊢ (℩'𝑥𝜑) = ∩ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} | ||
Theorem | reuabaiotaiota 44545* | The iota and the alternate iota over a wff 𝜑 are equal iff there is a unique satisfying value of {𝑥 ∣ 𝜑} = {𝑦}. (Contributed by AV, 25-Aug-2022.) |
⊢ (∃!𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ (℩𝑥𝜑) = (℩'𝑥𝜑)) | ||
Theorem | reuaiotaiota 44546 | The iota and the alternate iota over a wff 𝜑 are equal iff there is a unique value 𝑥 satisfying 𝜑. (Contributed by AV, 25-Aug-2022.) |
⊢ (∃!𝑥𝜑 ↔ (℩𝑥𝜑) = (℩'𝑥𝜑)) | ||
Theorem | aiotaexb 44547 | The alternate iota over a wff 𝜑 is a set iff there is a unique value 𝑥 satisfying 𝜑. (Contributed by AV, 25-Aug-2022.) |
⊢ (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V) | ||
Theorem | aiotavb 44548 | The alternate iota over a wff 𝜑 is the universe iff there is no unique value 𝑥 satisfying 𝜑. (Contributed by AV, 25-Aug-2022.) |
⊢ (¬ ∃!𝑥𝜑 ↔ (℩'𝑥𝜑) = V) | ||
Theorem | aiotaint 44549 | This is to df-aiota 44543 what iotauni 6406 is to df-iota 6389 (it uses intersection like df-aiota 44543, similar to iotauni 6406 using union like df-iota 6389; we could also prove an analogous result using union here too, in the same way that we have iotaint 6407). (Contributed by BJ, 31-Aug-2024.) |
⊢ (∃!𝑥𝜑 → (℩'𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) | ||
Theorem | dfaiota3 44550 | Alternate definition of ℩': this is to df-aiota 44543 what dfiota4 6423 is to df-iota 6389. operation using the if operator. It is simpler than df-aiota 44543 and uses no dummy variables, so it would be the preferred definition if ℩' becomes the description binder used in set.mm. (Contributed by BJ, 31-Aug-2024.) |
⊢ (℩'𝑥𝜑) = if(∃!𝑥𝜑, ∩ {𝑥 ∣ 𝜑}, V) | ||
Theorem | iotan0aiotaex 44551 | If the iota over a wff 𝜑 is not empty, the alternate iota over 𝜑 is a set. (Contributed by AV, 25-Aug-2022.) |
⊢ ((℩𝑥𝜑) ≠ ∅ → (℩'𝑥𝜑) ∈ V) | ||
Theorem | aiotaexaiotaiota 44552 | The alternate iota over a wff 𝜑 is a set iff the iota and the alternate iota over 𝜑 are equal. (Contributed by AV, 25-Aug-2022.) |
⊢ ((℩'𝑥𝜑) ∈ V ↔ (℩𝑥𝜑) = (℩'𝑥𝜑)) | ||
Theorem | aiotaval 44553* | Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of (alternate) iota. (Contributed by AV, 24-Aug-2022.) |
⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩'𝑥𝜑) = 𝑦) | ||
Theorem | aiota0def 44554* | Example for a defined alternate iota being the empty set, i.e., ∀𝑦𝑥 ⊆ 𝑦 is a wff satisfied by a unique value 𝑥, namely 𝑥 = ∅ (the empty set is the one and only set which is a subset of every set). This corresponds to iota0def 44498. (Contributed by AV, 25-Aug-2022.) |
⊢ (℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅ | ||
Theorem | aiota0ndef 44555* | Example for an undefined alternate iota being no set, i.e., ∀𝑦𝑦 ∈ 𝑥 is a wff not satisfied by a (unique) value 𝑥 (there is no set, and therefore certainly no unique set, which contains every set). This is different from iota0ndef 44499, where the iota still is a set (the empty set). (Contributed by AV, 25-Aug-2022.) |
⊢ (℩'𝑥∀𝑦 𝑦 ∈ 𝑥) ∉ V | ||
Theorem | r19.32 44556 | Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers, analogous to r19.32v 3270. (Contributed by Alexander van der Vekens, 29-Jun-2017.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | rexsb 44557* | An equivalent expression for restricted existence, analogous to exsb 2359. (Contributed by Alexander van der Vekens, 1-Jul-2017.) |
⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | rexrsb 44558* | An equivalent expression for restricted existence, analogous to exsb 2359. (Contributed by Alexander van der Vekens, 1-Jul-2017.) |
⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑥 = 𝑦 → 𝜑)) | ||
Theorem | 2rexsb 44559* | An equivalent expression for double restricted existence, analogous to rexsb 44557. (Contributed by Alexander van der Vekens, 1-Jul-2017.) |
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | ||
Theorem | 2rexrsb 44560* | An equivalent expression for double restricted existence, analogous to 2exsb 2360. (Contributed by Alexander van der Vekens, 1-Jul-2017.) |
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | ||
Theorem | cbvral2 44561* | Change bound variables of double restricted universal quantification, using implicit substitution, analogous to cbvral2v 3397. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑤𝜒 & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) | ||
Theorem | cbvrex2 44562* | Change bound variables of double restricted universal quantification, using implicit substitution, analogous to cbvrex2v 3398. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑤𝜒 & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜓) | ||
Theorem | ralndv1 44563 | Example for a theorem about a restricted universal quantification in which the restricting class depends on (actually is) the bound variable: All sets containing themselves contain the universal class. (Contributed by AV, 24-Jun-2023.) |
⊢ ∀𝑥 ∈ 𝑥 V ∈ 𝑥 | ||
Theorem | ralndv2 44564 | Second example for a theorem about a restricted universal quantification in which the restricting class depends on the bound variable: all subsets of a set are sets. (Contributed by AV, 24-Jun-2023.) |
⊢ ∀𝑥 ∈ 𝒫 𝑥𝑥 ∈ V | ||
Theorem | reuf1odnf 44565* | There is exactly one element in each of two isomorphic sets. Variant of reuf1od 44566 with no distinct variable condition for 𝜒. (Contributed by AV, 19-Mar-2023.) |
⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐵) & ⊢ ((𝜑 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜃)) & ⊢ Ⅎ𝑥𝜒 ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) | ||
Theorem | reuf1od 44566* | There is exactly one element in each of two isomorphic sets. (Contributed by AV, 19-Mar-2023.) |
⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐵) & ⊢ ((𝜑 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) | ||
Theorem | euoreqb 44567* | There is a set which is equal to one of two other sets iff the other sets are equal. (Contributed by AV, 24-Jan-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (∃!𝑥 ∈ 𝑉 (𝑥 = 𝐴 ∨ 𝑥 = 𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | 2reu3 44568* | Double restricted existential uniqueness, analogous to 2eu3 2657. (Contributed by Alexander van der Vekens, 29-Jun-2017.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (∃*𝑥 ∈ 𝐴 𝜑 ∨ ∃*𝑦 ∈ 𝐵 𝜑) → ((∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃!𝑥 ∈ 𝐴 𝜑) ↔ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑))) | ||
Theorem | 2reu7 44569* | Two equivalent expressions for double restricted existential uniqueness, analogous to 2eu7 2661. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) ↔ ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑)) | ||
Theorem | 2reu8 44570* | Two equivalent expressions for double restricted existential uniqueness, analogous to 2eu8 2662. Curiously, we can put ∃! on either of the internal conjuncts but not both. We can also commute ∃!𝑥 ∈ 𝐴∃!𝑦 ∈ 𝐵 using 2reu7 44569. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
⊢ (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑) ↔ ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 (∃!𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑)) | ||
Theorem | 2reu8i 44571* | Implication of a double restricted existential uniqueness in terms of restricted existential quantification and restricted universal quantification, see also 2reu8 44570. The involved wffs depend on the setvar variables as follows: ph(x,y), ta(v,y), ch(x,w), th(v,w), et(x,b), ps(a,b), ze(a,w). (Contributed by AV, 1-Apr-2023.) |
⊢ (𝑥 = 𝑣 → (𝜑 ↔ 𝜏)) & ⊢ (𝑥 = 𝑣 → (𝜒 ↔ 𝜃)) & ⊢ (𝑦 = 𝑤 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑏 → (𝜑 ↔ 𝜂)) & ⊢ (𝑥 = 𝑎 → (𝜒 ↔ 𝜁)) & ⊢ (((𝜒 → 𝑦 = 𝑤) ∧ 𝜁) → 𝑦 = 𝑤) & ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜂 → (𝑏 = 𝑦 ∧ (𝜓 → 𝑎 = 𝑥))))) | ||
Theorem | 2reuimp0 44572* | Implication of a double restricted existential uniqueness in terms of restricted existential quantification and restricted universal quantification. The involved wffs depend on the setvar variables as follows: ph(a,b), th(a,c), ch(d,b), ta(d,c), et(a,e), ps(a,f) (Contributed by AV, 13-Mar-2023.) |
⊢ (𝑏 = 𝑐 → (𝜑 ↔ 𝜃)) & ⊢ (𝑎 = 𝑑 → (𝜑 ↔ 𝜒)) & ⊢ (𝑎 = 𝑑 → (𝜃 ↔ 𝜏)) & ⊢ (𝑏 = 𝑒 → (𝜑 ↔ 𝜂)) & ⊢ (𝑐 = 𝑓 → (𝜃 ↔ 𝜓)) ⇒ ⊢ (∃!𝑎 ∈ 𝑉 ∃!𝑏 ∈ 𝑉 𝜑 → ∃𝑎 ∈ 𝑉 ∀𝑑 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) | ||
Theorem | 2reuimp 44573* | Implication of a double restricted existential uniqueness in terms of restricted existential quantification and restricted universal quantification if the class of the quantified elements is not empty. (Contributed by AV, 13-Mar-2023.) |
⊢ (𝑏 = 𝑐 → (𝜑 ↔ 𝜃)) & ⊢ (𝑎 = 𝑑 → (𝜑 ↔ 𝜒)) & ⊢ (𝑎 = 𝑑 → (𝜃 ↔ 𝜏)) & ⊢ (𝑏 = 𝑒 → (𝜑 ↔ 𝜂)) & ⊢ (𝑐 = 𝑓 → (𝜃 ↔ 𝜓)) ⇒ ⊢ ((𝑉 ≠ ∅ ∧ ∃!𝑎 ∈ 𝑉 ∃!𝑏 ∈ 𝑉 𝜑) → ∃𝑎 ∈ 𝑉 ∀𝑑 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑 ∧ 𝑒 = 𝑓))))) | ||
The current definition of the value (𝐹‘𝐴) of a function 𝐹 at an argument 𝐴 (see df-fv 6439) assures that this value is always a set, see fex 7097. This is because this definition can be applied to any classes 𝐹 and 𝐴, and evaluates to the empty set when it is not meaningful (as shown by ndmfv 6799 and fvprc 6761). Although it is very convenient for many theorems on functions and their proofs, there are some cases in which from (𝐹‘𝐴) = ∅ alone it cannot be decided/derived whether (𝐹‘𝐴) is meaningful (𝐹 is actually a function which is defined for 𝐴 and really has the function value ∅ at 𝐴) or not. Therefore, additional assumptions are required, such as ∅ ∉ ran 𝐹, ∅ ∈ ran 𝐹 or Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 (see, for example, ndmfvrcl 6800). To avoid such an ambiguity, an alternative definition (𝐹'''𝐴) (see df-afv 44578) would be possible which evaluates to the universal class ((𝐹'''𝐴) = V) if it is not meaningful (see afvnfundmuv 44597, ndmafv 44598, afvprc 44602 and nfunsnafv 44600), and which corresponds to the current definition ((𝐹‘𝐴) = (𝐹'''𝐴)) if it is (see afvfundmfveq 44596). That means (𝐹'''𝐴) = V → (𝐹‘𝐴) = ∅ (see afvpcfv0 44604), but (𝐹‘𝐴) = ∅ → (𝐹'''𝐴) = V is not generally valid. In the theory of partial functions, it is a common case that 𝐹 is not defined at 𝐴, which also would result in (𝐹'''𝐴) = V. In this context we say (𝐹'''𝐴) "is not defined" instead of "is not meaningful". With this definition the following intuitive equivalence holds: (𝐹'''𝐴) ∈ V <-> "(𝐹'''𝐴) is meaningful/defined". An interesting question would be if (𝐹‘𝐴) could be replaced by (𝐹'''𝐴) in most of the theorems based on function values. If we look at the (currently 19) proofs using the definition df-fv 6439 of (𝐹‘𝐴), we see that analogues for the following 8 theorems can be proven using the alternative definition: fveq1 6768-> afveq1 44592, fveq2 6769-> afveq2 44593, nffv 6779-> nfafv 44594, csbfv12 6812-> csbafv12g , fvres 6788-> afvres 44630, rlimdm 15256-> rlimdmafv 44635, tz6.12-1 6791-> tz6.12-1-afv 44632, fveu 6759-> afveu 44611. Three theorems proved by directly using df-fv 6439 are within a mathbox (fvsb 42038) or not used (isumclim3 15467, avril1 28821). However, the remaining 8 theorems proved by directly using df-fv 6439 are used more or less often: * fvex 6782: used in about 1750 proofs. * tz6.12-1 6791: root theorem of many theorems which have not a strict analogue, and which are used many times: fvprc 6761 (used in about 127 proofs), tz6.12i 6795 (used - indirectly via fvbr0 6796 and fvrn0 6797- in 18 proofs, and in fvclss 7110 used in fvclex 7793 used in fvresex 7794, which is not used!), dcomex 10202 (used in 4 proofs), ndmfv 6799 (used in 86 proofs) and nfunsn 6806 (used by dffv2 6858 which is not used). * fv2 6764: only used by elfv 6767, which is only used by fv3 6787, which is not used. * dffv3 6765: used by dffv4 6766 (the previous "df-fv"), which now is only used in deprecated (usage discouraged) theorems or within mathboxes (csbfv12gALTVD 42487), by shftval 14781 (itself used in 9 proofs), by dffv5 34220 (mathbox) and by fvco2 6860, which has the analogue afvco2 44634. * fvopab5 6902: used only by ajval 29217 (not used) and by adjval 30246 (used - indirectly - in 9 proofs). * zsum 15426: used (via isum 15427, sum0 15429 and fsumsers 15436) in more than 90 proofs. * isumshft 15547: used in pserdv2 25585 and (via logtayl 25811) 4 other proofs. * ovtpos 8046: used in 14 proofs. As a result of this analysis we can say that the current definition of a function value is crucial for Metamath and cannot be exchanged easily with an alternative definition. While fv2 6764, dffv3 6765, fvopab5 6902, zsum 15426, isumshft 15547 and ovtpos 8046 are not critical or are, hopefully, also valid for the alternative definition, fvex 6782 and tz6.12-1 6791 (and the theorems based on them) are essential for the current definition of function values. With the same arguments, an alternative definition of operation values ((𝐴𝑂𝐵)) could be meaningful to avoid ambiguities, see df-aov 44579. For additional details, see https://groups.google.com/g/metamath/c/cteNUppB6A4 44579. | ||
Syntax | wdfat 44574 | Extend the definition of a wff to include the "defined at" predicate. Read: "(the function) 𝐹 is defined at (the argument) 𝐴". In a previous version, the token "def@" was used. However, since the @ is used (informally) as a replacement for $ in commented out sections that may be deleted some day. While there is no violation of any standard to use the @ in a token, it could make the search for such commented-out sections slightly more difficult. (See remark of Norman Megill at https://groups.google.com/g/metamath/c/cteNUppB6A4). |
wff 𝐹 defAt 𝐴 | ||
Syntax | cafv 44575 | Extend the definition of a class to include the value of a function. Read: "the value of 𝐹 at 𝐴 " or "𝐹 of 𝐴". In a previous version, the symbol " ' " was used. However, since the similarity with the symbol ‘ used for the current definition of a function's value (see df-fv 6439), which, by the way, was intended to visualize that in many cases ‘ and " ' " are exchangeable, makes reading the theorems, especially those which use both definitions as dfafv2 44590, very difficult, 3 apostrophes ''' are used now so that it's easier to distinguish from df-fv 6439 and df-ima 5602. And not three backticks ( three times ‘) since that would be annoying to escape in a comment. (See remark of Norman Megill and Gerard Lang at https://groups.google.com/g/metamath/c/cteNUppB6A4 5602). |
class (𝐹'''𝐴) | ||
Syntax | caov 44576 | Extend class notation to include the value of an operation 𝐹 (such as +) for two arguments 𝐴 and 𝐵. Note that the syntax is simply three class symbols in a row surrounded by a pair of parentheses in contrast to the current definition, see df-ov 7272. |
class ((𝐴𝐹𝐵)) | ||
Definition | df-dfat 44577 | Definition of the predicate that determines if some class 𝐹 is defined as function for an argument 𝐴 or, in other words, if the function value for some class 𝐹 for an argument 𝐴 is defined. We say that 𝐹 is defined at 𝐴 if a 𝐹 is a function restricted to the member 𝐴 of its domain. (Contributed by Alexander van der Vekens, 25-May-2017.) |
⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | ||
Definition | df-afv 44578* | Alternative definition of the value of a function, (𝐹'''𝐴), also known as function application. In contrast to (𝐹‘𝐴) = ∅ (see df-fv 6439 and ndmfv 6799), (𝐹'''𝐴) = V if F is not defined for A! (Contributed by Alexander van der Vekens, 25-May-2017.) (Revised by BJ/AV, 25-Aug-2022.) |
⊢ (𝐹'''𝐴) = (℩'𝑥𝐴𝐹𝑥) | ||
Definition | df-aov 44579 | Define the value of an operation. In contrast to df-ov 7272, the alternative definition for a function value (see df-afv 44578) is used. By this, the value of the operation applied to two arguments is the universal class if the operation is not defined for these two arguments. There are still no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation 𝐹 and its arguments 𝐴 and 𝐵- will be useful for proving meaningful theorems. (Contributed by Alexander van der Vekens, 26-May-2017.) |
⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) | ||
Theorem | ralbinrald 44580* | Elemination of a restricted universal quantification under certain conditions. (Contributed by Alexander van der Vekens, 2-Aug-2017.) |
⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝑥 ∈ 𝐴 → 𝑥 = 𝑋) & ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜃)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ 𝜃)) | ||
Theorem | nvelim 44581 | If a class is the universal class it doesn't belong to any class, generalization of nvel 5244. (Contributed by Alexander van der Vekens, 26-May-2017.) |
⊢ (𝐴 = V → ¬ 𝐴 ∈ 𝐵) | ||
Theorem | alneu 44582 | If a statement holds for all sets, there is not a unique set for which the statement holds. (Contributed by Alexander van der Vekens, 28-Nov-2017.) |
⊢ (∀𝑥𝜑 → ¬ ∃!𝑥𝜑) | ||
Theorem | eu2ndop1stv 44583* | If there is a unique second component in an ordered pair contained in a given set, the first component must be a set. (Contributed by Alexander van der Vekens, 29-Nov-2017.) |
⊢ (∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 → 𝐴 ∈ V) | ||
Theorem | dfateq12d 44584 | Equality deduction for "defined at". (Contributed by Alexander van der Vekens, 26-May-2017.) |
⊢ (𝜑 → 𝐹 = 𝐺) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 defAt 𝐴 ↔ 𝐺 defAt 𝐵)) | ||
Theorem | nfdfat 44585 | Bound-variable hypothesis builder for "defined at". To prove a deduction version of this theorem is not easily possible because many deduction versions for bound-variable hypothesis builder for constructs the definition of "defined at" is based on are not available (e.g., for Fun/Rel, dom, ⊆, etc.). (Contributed by Alexander van der Vekens, 26-May-2017.) |
⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥 𝐹 defAt 𝐴 | ||
Theorem | dfdfat2 44586* | Alternate definition of the predicate "defined at" not using the Fun predicate. (Contributed by Alexander van der Vekens, 22-Jul-2017.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑦 𝐴𝐹𝑦)) | ||
Theorem | fundmdfat 44587 | A function is defined at any element of its domain. (Contributed by AV, 2-Sep-2022.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐹 defAt 𝐴) | ||
Theorem | dfatprc 44588 | A function is not defined at a proper class. (Contributed by AV, 1-Sep-2022.) |
⊢ (¬ 𝐴 ∈ V → ¬ 𝐹 defAt 𝐴) | ||
Theorem | dfatelrn 44589 | The value of a function 𝐹 at a set 𝐴 is in the range of the function 𝐹 if 𝐹 is defined at 𝐴. (Contributed by AV, 1-Sep-2022.) |
⊢ (𝐹 defAt 𝐴 → (𝐹‘𝐴) ∈ ran 𝐹) | ||
Theorem | dfafv2 44590 | Alternative definition of (𝐹'''𝐴) using (𝐹‘𝐴) directly. (Contributed by Alexander van der Vekens, 22-Jul-2017.) (Revised by AV, 25-Aug-2022.) |
⊢ (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) | ||
Theorem | afveq12d 44591 | Equality deduction for function value, analogous to fveq12d 6776. (Contributed by Alexander van der Vekens, 26-May-2017.) |
⊢ (𝜑 → 𝐹 = 𝐺) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐹'''𝐴) = (𝐺'''𝐵)) | ||
Theorem | afveq1 44592 | Equality theorem for function value, analogous to fveq1 6768. (Contributed by Alexander van der Vekens, 22-Jul-2017.) |
⊢ (𝐹 = 𝐺 → (𝐹'''𝐴) = (𝐺'''𝐴)) | ||
Theorem | afveq2 44593 | Equality theorem for function value, analogous to fveq1 6768. (Contributed by Alexander van der Vekens, 22-Jul-2017.) |
⊢ (𝐴 = 𝐵 → (𝐹'''𝐴) = (𝐹'''𝐵)) | ||
Theorem | nfafv 44594 | Bound-variable hypothesis builder for function value, analogous to nffv 6779. To prove a deduction version of this analogous to nffvd 6781 is not easily possible because a deduction version of nfdfat 44585 cannot be shown easily. (Contributed by Alexander van der Vekens, 26-May-2017.) |
⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥(𝐹'''𝐴) | ||
Theorem | csbafv12g 44595 | Move class substitution in and out of a function value, analogous to csbfv12 6812, with a direct proof proposed by Mario Carneiro, analogous to csbov123 7311. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹'''𝐵) = (⦋𝐴 / 𝑥⦌𝐹'''⦋𝐴 / 𝑥⦌𝐵)) | ||
Theorem | afvfundmfveq 44596 | If a class is a function restricted to a member of its domain, then the function value for this member is equal for both definitions. (Contributed by Alexander van der Vekens, 25-May-2017.) |
⊢ (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹‘𝐴)) | ||
Theorem | afvnfundmuv 44597 | If a set is not in the domain of a class or the class is not a function restricted to the set, then the function value for this set is the universe. (Contributed by Alexander van der Vekens, 26-May-2017.) |
⊢ (¬ 𝐹 defAt 𝐴 → (𝐹'''𝐴) = V) | ||
Theorem | ndmafv 44598 | The value of a class outside its domain is the universe, compare with ndmfv 6799. (Contributed by Alexander van der Vekens, 25-May-2017.) |
⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹'''𝐴) = V) | ||
Theorem | afvvdm 44599 | If the function value of a class for an argument is a set, the argument is contained in the domain of the class. (Contributed by Alexander van der Vekens, 25-May-2017.) |
⊢ ((𝐹'''𝐴) ∈ 𝐵 → 𝐴 ∈ dom 𝐹) | ||
Theorem | nfunsnafv 44600 | If the restriction of a class to a singleton is not a function, its value is the universe, compare with nfunsn 6806. (Contributed by Alexander van der Vekens, 25-May-2017.) |
⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹'''𝐴) = V) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |