| Metamath
Proof Explorer Theorem List (p. 446 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description | ||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Statement | ||||||||||||||||||||||||||||||||
| Theorem | subrfv 44501 | Vector subtraction at a value. (Contributed by Andrew Salmon, 27-Jan-2012.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴-𝑟𝐵)‘𝐶) = ((𝐴‘𝐶) − (𝐵‘𝐶))) | ||||||||||||||||||||||||||||||||
| Theorem | mulvfv 44502 | Scalar multiplication at a value. (Contributed by Andrew Salmon, 27-Jan-2012.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴.𝑣𝐵)‘𝐶) = (𝐴 · (𝐵‘𝐶))) | ||||||||||||||||||||||||||||||||
| Theorem | addrfn 44503 | Vector addition produces a function. (Contributed by Andrew Salmon, 27-Jan-2012.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) Fn ℝ) | ||||||||||||||||||||||||||||||||
| Theorem | subrfn 44504 | Vector subtraction produces a function. (Contributed by Andrew Salmon, 27-Jan-2012.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴-𝑟𝐵) Fn ℝ) | ||||||||||||||||||||||||||||||||
| Theorem | mulvfn 44505 | Scalar multiplication producees a function. (Contributed by Andrew Salmon, 27-Jan-2012.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) Fn ℝ) | ||||||||||||||||||||||||||||||||
| Theorem | addrcom 44506 | Vector addition is commutative. (Contributed by Andrew Salmon, 28-Jan-2012.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) = (𝐵+𝑟𝐴)) | ||||||||||||||||||||||||||||||||
| Definition | df-ptdf 44507* | Define the predicate PtDf, which is a utility definition used to shorten definitions and simplify proofs. (Contributed by Andrew Salmon, 15-Jul-2012.) | ||||||||||||||||||||||||||||||
| ⊢ PtDf(𝐴, 𝐵) = (𝑥 ∈ ℝ ↦ (((𝑥.𝑣(𝐵-𝑟𝐴)) +𝑣 𝐴) “ {1, 2, 3})) | ||||||||||||||||||||||||||||||||
| Definition | df-rr3 44508 | Define the set of all points RR3. We define each point 𝐴 as a function to allow the use of vector addition and subtraction as well as scalar multiplication in our proofs. (Contributed by Andrew Salmon, 15-Jul-2012.) | ||||||||||||||||||||||||||||||
| ⊢ RR3 = (ℝ ↑m {1, 2, 3}) | ||||||||||||||||||||||||||||||||
| Definition | df-line3 44509* | Define the set of all lines. A line is an infinite subset of RR3 that satisfies a PtDf property. (Contributed by Andrew Salmon, 15-Jul-2012.) | ||||||||||||||||||||||||||||||
| ⊢ line3 = {𝑥 ∈ 𝒫 RR3 ∣ (2o ≼ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑧 ≠ 𝑦 → ran PtDf(𝑦, 𝑧) = 𝑥))} | ||||||||||||||||||||||||||||||||
We are sad to report the passing of long-time contributor Alan Sare (Nov. 9, 1954 - Mar. 23, 2019). Alan's first contribution to Metamath was a shorter proof for tfrlem8 8303 in 2008. He developed a tool called "completeusersproof" that assists developing proofs using his "virtual deduction" method: https://us.metamath.org/other.html#completeusersproof 8303. His virtual deduction method is explained in the comment for wvd1 44601. Below are some excerpts from his first emails to NM in 2007: ...I have been interested in proving set theory theorems for many years for mental exercise. I enjoy it. I have used a book by Martin Zuckerman. It is informal. I am interested in completely and perfectly proving theorems. Mr. Zuckerman leaves out most of the steps of a proof, of course, like most authors do, as you have noted. A complete proof for higher theorems would require a volume of writing similar to the Metamath documents. So I am frustrated when I am not capable of constructing a proof and Zuckerman leaves out steps I do not understand. I could search for the steps in other texts, but I don't do that too much. Metamath may be the answer for me.... ...If we go beyond mathematics, I believe that it is possible to write down all human knowledge in a way similar to the way you have explicated large areas of mathematics. Of course, that would be a much, much more difficult job. For example, it is possible to take a hard science like physics, construct axioms based on experimental results, and to cast all of physics into a collection of axioms and theorems. Maybe this has already been attempted, although I am not familiar with it. When one then moves on to the soft sciences such as social science, this job gets much more difficult. The key is: All human thought consists of logical operations on abstract objects. Usually, these logical operations are done informally. There is no reason why one cannot take any subject and explicate it and take it down to the indivisible postulates in a formal rigorous way.... ...When I read a math book or an engineering book I come across something I don't understand and I am compelled to understand it. But, often it is hopeless. I don't have the time. Or, I would have to read the same thing by multiple authors in the hope that different authors would give parts of the working proof that others have omitted. It is very inefficient. Because I have always been inclined to "get to the bottom" for a 100% fully understood proof.... | ||||||||||||||||||||||||||||||||
| Theorem | idiALT 44510 | Placeholder for idi 1. Though unnecessary, this theorem is sometimes used in proofs in this mathbox for pedagogical purposes. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ 𝜑 ⇒ ⊢ 𝜑 | ||||||||||||||||||||||||||||||||
| Theorem | exbir 44511 | Exportation implication also converting the consequent from a biconditional to an implication. Derived automatically from exbirVD 44884. (Contributed by Alan Sare, 31-Dec-2011.) | ||||||||||||||||||||||||||||||
| ⊢ (((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) → (𝜑 → (𝜓 → (𝜃 → 𝜒)))) | ||||||||||||||||||||||||||||||||
| Theorem | 3impexpbicom 44512 | Version of 3impexp 1359 where in addition the consequent is commuted. (Contributed by Alan Sare, 31-Dec-2011.) | ||||||||||||||||||||||||||||||
| ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))) | ||||||||||||||||||||||||||||||||
| Theorem | 3impexpbicomi 44513 | Inference associated with 3impexpbicom 44512. Derived automatically from 3impexpbicomiVD 44889. (Contributed by Alan Sare, 31-Dec-2011.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) | ||||||||||||||||||||||||||||||||
| Theorem | bi1imp 44514 | Importation inference similar to imp 406, except the outermost implication of the hypothesis is a biconditional. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 ↔ (𝜓 → 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||||||||||||||||||||||||||||||||
| Theorem | bi2imp 44515 | Importation inference similar to imp 406, except both implications of the hypothesis are biconditionals. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 ↔ (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||||||||||||||||||||||||||||||||
| Theorem | bi3impb 44516 | Similar to 3impb 1114 with implication in hypothesis replaced by biconditional. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | bi3impa 44517 | Similar to 3impa 1109 with implication in hypothesis replaced by biconditional. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | bi23impib 44518 | 3impib 1116 with the inner implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | bi13impib 44519 | 3impib 1116 with the outer implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 ↔ ((𝜓 ∧ 𝜒) → 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | bi123impib 44520 | 3impib 1116 with the implications of the hypothesis biconditionals. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 ↔ ((𝜓 ∧ 𝜒) ↔ 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | bi13impia 44521 | 3impia 1117 with the outer implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜒 → 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | bi123impia 44522 | 3impia 1117 with the implications of the hypothesis biconditionals. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜒 ↔ 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | bi33imp12 44523 | 3imp 1110 with innermost implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | bi13imp23 44524 | 3imp 1110 with outermost implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 ↔ (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | bi13imp2 44525 | Similar to 3imp 1110 except the outermost and innermost implications are biconditionals. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 ↔ (𝜓 → (𝜒 ↔ 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | bi12imp3 44526 | Similar to 3imp 1110 except all but innermost implication are biconditionals. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 ↔ (𝜓 ↔ (𝜒 → 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | bi23imp1 44527 | Similar to 3imp 1110 except all but outermost implication are biconditionals. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → (𝜓 ↔ (𝜒 ↔ 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | bi123imp0 44528 | Similar to 3imp 1110 except all implications are biconditionals. (Contributed by Alan Sare, 6-Nov-2017.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 ↔ (𝜓 ↔ (𝜒 ↔ 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||||||||||||||||||||||||||||||||
| Theorem | 4animp1 44529 | A single hypothesis unification deduction with an assertion which is an implication with a 4-right-nested conjunction antecedent. (Contributed by Alan Sare, 30-May-2018.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃)) ⇒ ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||||||||||||||||||||||||||||||||
| Theorem | 4an31 44530 | A rearrangement of conjuncts for a 4-right-nested conjunction. (Contributed by Alan Sare, 30-May-2018.) | ||||||||||||||||||||||||||||||
| ⊢ ((((𝜒 ∧ 𝜓) ∧ 𝜑) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||||||||||||||||||||||||||||||||
| Theorem | 4an4132 44531 | A rearrangement of conjuncts for a 4-right-nested conjunction. (Contributed by Alan Sare, 30-May-2018.) | ||||||||||||||||||||||||||||||
| ⊢ ((((𝜃 ∧ 𝜒) ∧ 𝜓) ∧ 𝜑) → 𝜏) ⇒ ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||||||||||||||||||||||||||||||||
| Theorem | expcomdg 44532 | Biconditional form of expcomd 416. (Contributed by Alan Sare, 22-Jul-2012.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ↔ (𝜑 → (𝜒 → (𝜓 → 𝜃)))) | ||||||||||||||||||||||||||||||||
| Theorem | iidn3 44533 | idn3 44647 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜒))) | ||||||||||||||||||||||||||||||||
| Theorem | ee222 44534 | e222 44668 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 7-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ (𝜑 → (𝜓 → 𝜏)) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||||||||||||||||||||||||||||||||
| Theorem | ee3bir 44535 | Right-biconditional form of e3 44768 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 22-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜏 ↔ 𝜃) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) | ||||||||||||||||||||||||||||||||
| Theorem | ee13 44536 | e13 44779 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 28-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) & ⊢ (𝜓 → (𝜏 → 𝜂)) ⇒ ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜂))) | ||||||||||||||||||||||||||||||||
| Theorem | ee121 44537 | e121 44688 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜒 → 𝜃)) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜓 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜒 → 𝜂)) | ||||||||||||||||||||||||||||||||
| Theorem | ee122 44538 | e122 44685 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜒 → 𝜃)) & ⊢ (𝜑 → (𝜒 → 𝜏)) & ⊢ (𝜓 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜒 → 𝜂)) | ||||||||||||||||||||||||||||||||
| Theorem | ee333 44539 | e333 44764 without virtual deductions. (Contributed by Alan Sare, 17-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) & ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) & ⊢ (𝜃 → (𝜏 → (𝜂 → 𝜁))) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜁))) | ||||||||||||||||||||||||||||||||
| Theorem | ee323 44540 | e323 44797 without virtual deductions. (Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → (𝜓 → 𝜏)) & ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) & ⊢ (𝜃 → (𝜏 → (𝜂 → 𝜁))) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜁))) | ||||||||||||||||||||||||||||||||
| Theorem | 3ornot23 44541 | If the second and third disjuncts of a true triple disjunction are false, then the first disjunct is true. Automatically derived from 3ornot23VD 44878. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ((𝜒 ∨ 𝜑 ∨ 𝜓) → 𝜒)) | ||||||||||||||||||||||||||||||||
| Theorem | orbi1r 44542 | orbi1 917 with order of disjuncts reversed. Derived from orbi1rVD 44879. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓))) | ||||||||||||||||||||||||||||||||
| Theorem | 3orbi123 44543 | pm4.39 978 with a 3-conjunct antecedent. This proof is 3orbi123VD 44881 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃) ∧ (𝜏 ↔ 𝜂)) → ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ (𝜓 ∨ 𝜃 ∨ 𝜂))) | ||||||||||||||||||||||||||||||||
| Theorem | syl5imp 44544 | Closed form of syl5 34. Derived automatically from syl5impVD 44894. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜃 → 𝜓) → (𝜑 → (𝜃 → 𝜒)))) | ||||||||||||||||||||||||||||||||
| Theorem | impexpd 44545 |
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. After the
User's Proof was completed, it was minimized. The completed User's Proof
before minimization is not shown. (Contributed by Alan Sare,
18-Mar-2012.) (Proof modification is discouraged.)
(New usage is discouraged.)
| ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ↔ (𝜑 → (𝜓 → (𝜒 → 𝜃)))) | ||||||||||||||||||||||||||||||||
| Theorem | com3rgbi 44546 |
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. The
completed Virtual Deduction Proof (not shown) was minimized. The
minimized proof is shown.
(Contributed by Alan Sare, 18-Mar-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
| ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) ↔ (𝜒 → (𝜑 → (𝜓 → 𝜃)))) | ||||||||||||||||||||||||||||||||
| Theorem | impexpdcom 44547 |
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. The
completed Virtual Deduction Proof (not shown) was minimized. The
minimized proof is shown. (Contributed by Alan Sare, 18-Mar-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
| ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ↔ (𝜓 → (𝜒 → (𝜑 → 𝜃)))) | ||||||||||||||||||||||||||||||||
| Theorem | ee1111 44548 |
Non-virtual deduction form of e1111 44707. (Contributed by Alan Sare,
18-Mar-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
The following User's Proof is a Virtual Deduction proof
completed automatically by the tools program completeusersproof.cmd,
which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof
Assistant. The completed Virtual Deduction Proof (not shown) was
minimized. The minimized proof is shown.
| ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂)))) ⇒ ⊢ (𝜑 → 𝜂) | ||||||||||||||||||||||||||||||||
| Theorem | pm2.43bgbi 44549 |
Logical equivalence of a 2-left-nested implication and a 1-left-nested
implicated
when two antecedents of the former implication are identical.
(Contributed by Alan Sare, 18-Mar-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. The
completed Virtual
Deduction Proof (not shown) was minimized. The minimized proof is
shown.
| ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 → (𝜓 → (𝜑 → 𝜒))) ↔ (𝜓 → (𝜑 → 𝜒))) | ||||||||||||||||||||||||||||||||
| Theorem | pm2.43cbi 44550 |
Logical equivalence of a 3-left-nested implication and a 2-left-nested
implicated when two antecedents of the former implication are identical.
(Contributed by Alan Sare, 18-Mar-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
The following User's Proof is
a Virtual Deduction proof completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. The completed Virtual Deduction Proof
(not shown) was minimized. The minimized proof is shown.
| ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜑 → 𝜃)))) ↔ (𝜓 → (𝜒 → (𝜑 → 𝜃)))) | ||||||||||||||||||||||||||||||||
| Theorem | ee233 44551 |
Non-virtual deduction form of e233 44796. (Contributed by Alan Sare,
18-Mar-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. The
completed Virtual
Deduction Proof (not shown) was minimized. The minimized proof is
shown.
| ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) & ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜂))) & ⊢ (𝜒 → (𝜏 → (𝜂 → 𝜁))) ⇒ ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜁))) | ||||||||||||||||||||||||||||||||
| Theorem | imbi13 44552 | Join three logical equivalences to form equivalence of implications. imbi13 44552 is imbi13VD 44905 without virtual deductions and was automatically derived from imbi13VD 44905 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜏 ↔ 𝜂) → ((𝜑 → (𝜒 → 𝜏)) ↔ (𝜓 → (𝜃 → 𝜂)))))) | ||||||||||||||||||||||||||||||||
| Theorem | ee33 44553 |
Non-virtual deduction form of e33 44765. (Contributed by Alan Sare,
18-Mar-2012.) (Proof modification is discouraged.)
(New usage is discouraged.)
The following User's Proof is a Virtual Deduction proof
completed automatically by the tools program completeusersproof.cmd,
which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof
Assistant. The completed Virtual Deduction Proof (not shown) was
minimized. The minimized proof is shown.
| ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) | ||||||||||||||||||||||||||||||||
| Theorem | con5 44554 | Biconditional contraposition variation. This proof is con5VD 44931 automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 → 𝜓)) | ||||||||||||||||||||||||||||||||
| Theorem | con5i 44555 | Inference form of con5 44554. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 ↔ ¬ 𝜓) ⇒ ⊢ (¬ 𝜑 → 𝜓) | ||||||||||||||||||||||||||||||||
| Theorem | exlimexi 44556 | Inference similar to Theorem 19.23 of [Margaris] p. 90. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (∃𝑥𝜑 → (𝜑 → 𝜓)) ⇒ ⊢ (∃𝑥𝜑 → 𝜓) | ||||||||||||||||||||||||||||||||
| Theorem | sb5ALT 44557* | Equivalence for substitution. Alternate proof of sb5 2278. This proof is sb5ALTVD 44944 automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | ||||||||||||||||||||||||||||||||
| Theorem | eexinst01 44558 | exinst01 44657 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ∃𝑥𝜓 & ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜒 → ∀𝑥𝜒) ⇒ ⊢ (𝜑 → 𝜒) | ||||||||||||||||||||||||||||||||
| Theorem | eexinst11 44559 | exinst11 44658 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → ∃𝑥𝜓) & ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜒 → ∀𝑥𝜒) ⇒ ⊢ (𝜑 → 𝜒) | ||||||||||||||||||||||||||||||||
| Theorem | vk15.4j 44560 | Excercise 4j of Unit 15 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. This proof is the minimized Hilbert-style axiomatic version of the Fitch-style Natural Deduction proof found on page 442 of Klenk and was automatically derived from that proof. vk15.4j 44560 is vk15.4jVD 44945 automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ¬ (∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒)) & ⊢ (∀𝑥𝜒 → ¬ ∃𝑥(𝜃 ∧ 𝜏)) & ⊢ ¬ ∀𝑥(𝜏 → 𝜑) ⇒ ⊢ (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜓) | ||||||||||||||||||||||||||||||||
| Theorem | notnotrALT 44561 | Converse of double negation. Alternate proof of notnotr 130. This proof is notnotrALTVD 44946 automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (¬ ¬ 𝜑 → 𝜑) | ||||||||||||||||||||||||||||||||
| Theorem | con3ALT2 44562 | Contraposition. Alternate proof of con3 153. This proof is con3ALTVD 44947 automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | ||||||||||||||||||||||||||||||||
| Theorem | ssralv2 44563* | Quantification restricted to a subclass for two quantifiers. ssralv 4003 for two quantifiers. The proof of ssralv2 44563 was automatically generated by minimizing the automatically translated proof of ssralv2VD 44897. The automatic translation is by the tools program translate_without_overwriting.cmd. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝜑)) | ||||||||||||||||||||||||||||||||
| Theorem | sbc3or 44564 | sbcor 3792 with a 3-disjuncts. This proof is sbc3orgVD 44882 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Revised by NM, 24-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ([𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓 ∨ [𝐴 / 𝑥]𝜒)) | ||||||||||||||||||||||||||||||||
| Theorem | alrim3con13v 44565* | Closed form of alrimi 2216 with 2 additional conjuncts having no occurrences of the quantifying variable. This proof is 19.21a3con13vVD 44883 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝜑 → ∀𝑥𝜑) → ((𝜓 ∧ 𝜑 ∧ 𝜒) → ∀𝑥(𝜓 ∧ 𝜑 ∧ 𝜒))) | ||||||||||||||||||||||||||||||||
| Theorem | rspsbc2 44566* | rspsbc 3830 with two quantifying variables. This proof is rspsbc2VD 44886 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐷 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑))) | ||||||||||||||||||||||||||||||||
| Theorem | sbcoreleleq 44567* | Substitution of a setvar variable for another setvar variable in a 3-conjunct formula. Derived automatically from sbcoreleleqVD 44890. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴))) | ||||||||||||||||||||||||||||||||
| Theorem | tratrb 44568* | If a class is transitive and any two distinct elements of the class are E-comparable, then every element of that class is transitive. Derived automatically from tratrbVD 44892. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → Tr 𝐵) | ||||||||||||||||||||||||||||||||
| Theorem | ordelordALT 44569 | An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. This is an alternate proof of ordelord 6328 using the Axiom of Regularity indirectly through dford2 9510. dford2 is a weaker definition of ordinal number. Given the Axiom of Regularity, it need not be assumed that E Fr 𝐴 because this is inferred by the Axiom of Regularity. ordelordALT 44569 is ordelordALTVD 44898 without virtual deductions and was automatically derived from ordelordALTVD 44898 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) | ||||||||||||||||||||||||||||||||
| Theorem | sbcim2g 44570 | Distribution of class substitution over a left-nested implication. Similar to sbcimg 3790. sbcim2g 44570 is sbcim2gVD 44906 without virtual deductions and was automatically derived from sbcim2gVD 44906 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))) | ||||||||||||||||||||||||||||||||
| Theorem | sbcbi 44571 | Implication form of sbcbii 3798. sbcbi 44571 is sbcbiVD 44907 without virtual deductions and was automatically derived from sbcbiVD 44907 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) | ||||||||||||||||||||||||||||||||
| Theorem | trsbc 44572* | Formula-building inference rule for class substitution, substituting a class variable for the setvar variable of the transitivity predicate. trsbc 44572 is trsbcVD 44908 without virtual deductions and was automatically derived from trsbcVD 44908 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴)) | ||||||||||||||||||||||||||||||||
| Theorem | truniALT 44573* | The union of a class of transitive sets is transitive. Alternate proof of truni 5213. truniALT 44573 is truniALTVD 44909 without virtual deductions and was automatically derived from truniALTVD 44909 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪ 𝐴) | ||||||||||||||||||||||||||||||||
| Theorem | onfrALTlem5 44574* | Lemma for onfrALT 44581. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]((𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏 (𝑏 ∩ 𝑦) = ∅) ↔ (((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)) | ||||||||||||||||||||||||||||||||
| Theorem | onfrALTlem4 44575* | Lemma for onfrALT 44581. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) | ||||||||||||||||||||||||||||||||
| Theorem | onfrALTlem3 44576* | Lemma for onfrALT 44581. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)) | ||||||||||||||||||||||||||||||||
| Theorem | ggen31 44577* | gen31 44653 without virtual deductions. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → ∀𝑥𝜃))) | ||||||||||||||||||||||||||||||||
| Theorem | onfrALTlem2 44578* | Lemma for onfrALT 44581. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) | ||||||||||||||||||||||||||||||||
| Theorem | cbvexsv 44579* | A theorem pertaining to the substitution for an existentially quantified variable when the substituted variable does not occur in the quantified wff. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) | ||||||||||||||||||||||||||||||||
| Theorem | onfrALTlem1 44580* | Lemma for onfrALT 44581. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) | ||||||||||||||||||||||||||||||||
| Theorem | onfrALT 44581 | The membership relation is foundational on the class of ordinal numbers. onfrALT 44581 is an alternate proof of onfr 6345. onfrALTVD 44922 is the Virtual Deduction proof from which onfrALT 44581 is derived. The Virtual Deduction proof mirrors the working proof of onfr 6345 which is the main part of the proof of Theorem 7.12 of the first edition of TakeutiZaring. The proof of the corresponding Proposition 7.12 of [TakeutiZaring] p. 38 (second edition) does not contain the working proof equivalent of onfrALTVD 44922. This theorem does not rely on the Axiom of Regularity. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ E Fr On | ||||||||||||||||||||||||||||||||
| Theorem | 19.41rg 44582 | Closed form of right-to-left implication of 19.41 2238, Theorem 19.41 of [Margaris] p. 90. Derived from 19.41rgVD 44933. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓))) | ||||||||||||||||||||||||||||||||
| Theorem | opelopab4 44583* | Ordered pair membership in a class abstraction of ordered pairs. Compare to elopab 5467. (Contributed by Alan Sare, 8-Feb-2014.) (Revised by Mario Carneiro, 6-May-2015.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (〈𝑢, 𝑣〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) | ||||||||||||||||||||||||||||||||
| Theorem | 2pm13.193 44584 | pm13.193 44443 for two variables. pm13.193 44443 is Theorem *13.193 in [WhiteheadRussell] p. 179. Derived from 2pm13.193VD 44934. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) | ||||||||||||||||||||||||||||||||
| Theorem | hbntal 44585 | A closed form of hbn 2297. hbnt 2296 is another closed form of hbn 2297. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥(¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | ||||||||||||||||||||||||||||||||
| Theorem | hbimpg 44586 | A closed form of hbim 2301. Derived from hbimpgVD 44935. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓))) | ||||||||||||||||||||||||||||||||
| Theorem | hbalg 44587 | Closed form of hbal 2170. Derived from hbalgVD 44936. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) | ||||||||||||||||||||||||||||||||
| Theorem | hbexg 44588 | Closed form of nfex 2325. Derived from hbexgVD 44937. (Contributed by Alan Sare, 8-Feb-2014.) (Revised by Mario Carneiro, 12-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)) | ||||||||||||||||||||||||||||||||
| Theorem | ax6e2eq 44589* | Alternate form of ax6e 2383 for non-distinct 𝑥, 𝑦 and 𝑢 = 𝑣. ax6e2eq 44589 is derived from ax6e2eqVD 44938. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) | ||||||||||||||||||||||||||||||||
| Theorem | ax6e2nd 44590* | If at least two sets exist (dtru 5379), then the same is true expressed in an alternate form similar to the form of ax6e 2383. ax6e2nd 44590 is derived from ax6e2ndVD 44939. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) | ||||||||||||||||||||||||||||||||
| Theorem | ax6e2ndeq 44591* | "At least two sets exist" expressed in the form of dtru 5379 is logically equivalent to the same expressed in a form similar to ax6e 2383 if dtru 5379 is false implies 𝑢 = 𝑣. ax6e2ndeq 44591 is derived from ax6e2ndeqVD 44940. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) | ||||||||||||||||||||||||||||||||
| Theorem | 2sb5nd 44592* | Equivalence for double substitution 2sb5 2280 without distinct 𝑥, 𝑦 requirement. 2sb5nd 44592 is derived from 2sb5ndVD 44941. (Contributed by Alan Sare, 30-Apr-2014.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) | ||||||||||||||||||||||||||||||||
| Theorem | 2uasbanh 44593* | Distribute the unabbreviated form of proper substitution in and out of a conjunction. 2uasbanh 44593 is derived from 2uasbanhVD 44942. (Contributed by Alan Sare, 31-May-2014.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜒 ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))) ⇒ ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))) | ||||||||||||||||||||||||||||||||
| Theorem | 2uasban 44594* | Distribute the unabbreviated form of proper substitution in and out of a conjunction. (Contributed by Alan Sare, 31-May-2014.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))) | ||||||||||||||||||||||||||||||||
| Theorem | e2ebind 44595 | Absorption of an existential quantifier of a double existential quantifier of non-distinct variables. e2ebind 44595 is derived from e2ebindVD 44943. (Contributed by Alan Sare, 27-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) | ||||||||||||||||||||||||||||||||
| Theorem | elpwgded 44596 | elpwgdedVD 44948 in conventional notation. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜓 → 𝐴 ⊆ 𝐵) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝒫 𝐵) | ||||||||||||||||||||||||||||||||
| Theorem | trelded 44597 | Deduction form of trel 5206. In a transitive class, the membership relation is transitive. (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → Tr 𝐴) & ⊢ (𝜓 → 𝐵 ∈ 𝐶) & ⊢ (𝜒 → 𝐶 ∈ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝐵 ∈ 𝐴) | ||||||||||||||||||||||||||||||||
| Theorem | jaoded 44598 | Deduction form of jao 962. Disjunction of antecedents. (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜃 → (𝜏 → 𝜒)) & ⊢ (𝜂 → (𝜓 ∨ 𝜏)) ⇒ ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜂) → 𝜒) | ||||||||||||||||||||||||||||||||
| Theorem | sbtT 44599 | A substitution into a theorem remains true. sbt 2069 with the existence of no virtual hypotheses for the hypothesis expressed as the empty virtual hypothesis collection. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||
| ⊢ (⊤ → 𝜑) ⇒ ⊢ [𝑦 / 𝑥]𝜑 | ||||||||||||||||||||||||||||||||
| Theorem | not12an2impnot1 44600 | If a double conjunction is false and the second conjunct is true, then the first conjunct is false. https://us.metamath.org/other/completeusersproof/not12an2impnot1vd.html is the Virtual Deduction proof verified by automatically transforming it into the Metamath proof of not12an2impnot1 44600 using completeusersproof, which is verified by the Metamath program. https://us.metamath.org/other/completeusersproof/not12an2impnot1ro.html 44600 is a form of the completed proof which preserves the Virtual Deduction proof's step numbers and their ordering. (Contributed by Alan Sare, 13-Jun-2018.) | ||||||||||||||||||||||||||||||
| ⊢ ((¬ (𝜑 ∧ 𝜓) ∧ 𝜓) → ¬ 𝜑) | ||||||||||||||||||||||||||||||||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |