![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mto | Structured version Visualization version GIF version |
Description: The rule of modus tollens. The rule says, "if 𝜓 is not true, and 𝜑 implies 𝜓, then 𝜑 must also be not true". Modus tollens is short for "modus tollendo tollens", a Latin phrase that means "the mode that by denying denies" - remark in [Sanford] p. 39. It is also called denying the consequent. Modus tollens is closely related to modus ponens ax-mp 5. Note that this rule is also valid in intuitionistic logic. Inference associated with con3i 154. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
mto.1 | ⊢ ¬ 𝜓 |
mto.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
mto | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mto.2 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mto.1 | . . 3 ⊢ ¬ 𝜓 | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜓) |
4 | 1, 3 | pm2.65i 194 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mt3 201 mtbi 322 intnan 486 intnanr 487 pm3.2ni 880 ru0 2124 nexr 2189 nonconne 2949 ruOLD 3789 reu0 4366 neldifsn 4796 axnulALT 5309 nvel 5321 nfnid 5380 nprrel 5747 0xp 5786 son2lpi 6150 nlim0 6444 snsn0non 6510 onnev 6512 nfunv 6600 dffv3 6902 mpo0 7517 onprc 7796 ordeleqon 7800 onuninsuci 7860 orduninsuc 7863 iprc 7933 poxp2 8166 poxp3 8173 tfrlem13 8428 tfrlem14 8429 tfrlem16 8431 tfr2b 8434 tz7.44lem1 8443 nlim1 8525 nlim2 8526 sdomn2lp 9154 canth2 9168 map2xp 9185 snnen2o 9270 1sdom2dom 9280 fi0 9457 sucprcreg 9638 rankxplim3 9918 alephnbtwn2 10109 alephprc 10136 unialeph 10138 kmlem16 10203 cfsuc 10294 nd1 10624 nd2 10625 canthp1lem2 10690 0nnq 10961 1ne0sr 11133 pnfnre 11299 mnfnre 11301 ine0 11695 recgt0ii 12171 inelr 12253 0nnn 12299 nnunb 12519 nn0nepnf 12604 indstr 12955 1nuz2 12963 0nrp 13067 lsw0 14599 egt2lt3 16238 ruc 16275 odd2np1 16374 divalglem5 16430 bitsf1 16479 0nprm 16711 structcnvcnv 17186 fvsetsid 17201 fnpr2ob 17604 oduclatb 18564 0g0 18689 psgnunilem3 19528 zringndrg 21496 00ply1bas 22256 0ntop 22926 topnex 23018 bwth 23433 ustn0 24244 vitalilem5 25660 deg1nn0clb 26143 aaliou3lem9 26406 sinhalfpilem 26519 logdmn0 26696 dvlog 26707 ppiltx 27234 dchrisum0fno1 27569 nosgnn0i 27718 sltsolem1 27734 nolt02o 27754 nogt01o 27755 noprc 27838 oldirr 27942 leftirr 27943 rightirr 27944 axlowdim1 28988 topnfbey 30497 0ngrp 30539 dmadjrnb 31934 neldifpr1 32558 neldifpr2 32559 1nei 32753 nn0xmulclb 32781 ballotlem2 34469 bnj1304 34811 bnj110 34850 bnj98 34859 bnj1523 35063 subfacp1lem5 35168 msrrcl 35527 linedegen 36124 rankeq1o 36152 neufal 36388 neutru 36389 unqsym1 36407 onpsstopbas 36412 ordcmp 36429 onint1 36431 bj-ru 36926 bj-1nel0 36936 bj-0nelsngl 36953 bj-0nmoore 37094 bj-ccinftydisj 37195 relowlpssretop 37346 poimirlem16 37622 poimirlem17 37623 poimirlem18 37624 poimirlem19 37625 poimirlem20 37626 poimirlem22 37628 poimirlem30 37636 zrdivrng 37939 prtlem400 38851 equidqe 38903 sn-inelr 42473 eldioph4b 42798 jm2.23 42984 ttac 43024 sucomisnotcard 43533 clsk1indlem1 44034 rusbcALT 44434 nimnbi 45105 nimnbi2 45106 fouriersw 46186 aibnbna 46855 dtrucor3 48647 |
Copyright terms: Public domain | W3C validator |