| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mto | Structured version Visualization version GIF version | ||
| Description: The rule of modus tollens. The rule says, "if 𝜓 is not true, and 𝜑 implies 𝜓, then 𝜑 must also be not true". Modus tollens is short for "modus tollendo tollens", a Latin phrase that means "the mode that by denying denies" - remark in [Sanford] p. 39. It is also called denying the consequent. Modus tollens is closely related to modus ponens ax-mp 5. Note that this rule is also valid in intuitionistic logic. Inference associated with con3i 154. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| mto.1 | ⊢ ¬ 𝜓 |
| mto.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| mto | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mto.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mto.1 | . . 3 ⊢ ¬ 𝜓 | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜓) |
| 4 | 1, 3 | pm2.65i 194 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt3 201 mtbi 322 intnan 486 intnanr 487 pm3.2ni 880 ru0 2128 nexr 2193 nonconne 2937 ruOLD 3752 reu0 4324 neldifsn 4756 axnulALT 5259 nvel 5271 nfnid 5330 nprrel 5697 0xp 5737 son2lpi 6101 nlim0 6392 snsn0non 6459 onnev 6461 nfunv 6549 dffv3 6854 mpo0 7474 onprc 7754 ordeleqon 7758 onuninsuci 7816 orduninsuc 7819 iprc 7887 poxp2 8122 poxp3 8129 tfrlem13 8358 tfrlem14 8359 tfrlem16 8361 tfr2b 8364 tz7.44lem1 8373 nlim1 8453 nlim2 8454 sdomn2lp 9080 canth2 9094 map2xp 9111 snnen2o 9184 1sdom2dom 9194 fi0 9371 sucprcreg 9554 rankxplim3 9834 alephnbtwn2 10025 alephprc 10052 unialeph 10054 kmlem16 10119 cfsuc 10210 nd1 10540 nd2 10541 canthp1lem2 10606 0nnq 10877 1ne0sr 11049 pnfnre 11215 mnfnre 11217 ine0 11613 recgt0ii 12089 inelr 12176 0nnn 12222 nnunb 12438 nn0nepnf 12523 indstr 12875 1nuz2 12883 0nrp 12988 lsw0 14530 egt2lt3 16174 ruc 16211 odd2np1 16311 divalglem5 16367 bitsf1 16416 0nprm 16648 structcnvcnv 17123 fvsetsid 17138 fnpr2ob 17521 oduclatb 18466 0g0 18591 psgnunilem3 19426 zringndrg 21378 00ply1bas 22124 0ntop 22792 topnex 22883 bwth 23297 ustn0 24108 vitalilem5 25513 deg1nn0clb 25995 aaliou3lem9 26258 sinhalfpilem 26372 logdmn0 26549 dvlog 26560 ppiltx 27087 dchrisum0fno1 27422 nosgnn0i 27571 sltsolem1 27587 nolt02o 27607 nogt01o 27608 noprc 27691 oldirr 27801 leftirr 27802 rightirr 27803 axlowdim1 28886 topnfbey 30398 0ngrp 30440 dmadjrnb 31835 neldifpr1 32462 neldifpr2 32463 1nei 32660 nn0xmulclb 32694 cos9thpinconstr 33781 trisecnconstr 33782 ballotlem2 34480 bnj1304 34809 bnj110 34848 bnj98 34857 bnj1523 35061 subfacp1lem5 35171 msrrcl 35530 linedegen 36131 rankeq1o 36159 neufal 36394 neutru 36395 unqsym1 36413 onpsstopbas 36418 ordcmp 36435 onint1 36437 bj-ru 36932 bj-1nel0 36942 bj-0nelsngl 36959 bj-0nmoore 37100 bj-ccinftydisj 37201 relowlpssretop 37352 poimirlem16 37630 poimirlem17 37631 poimirlem18 37632 poimirlem19 37633 poimirlem20 37634 poimirlem22 37636 poimirlem30 37644 zrdivrng 37947 prtlem400 38863 equidqe 38915 sn-inelr 42475 eldioph4b 42799 jm2.23 42985 ttac 43025 sucomisnotcard 43533 clsk1indlem1 44034 rusbcALT 44428 nimnbi 45157 nimnbi2 45158 fouriersw 46229 cjnpoly 46890 tannpoly 46891 sinnpoly 46892 aibnbna 46907 dtrucor3 48787 fonex 48855 |
| Copyright terms: Public domain | W3C validator |