| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mto | Structured version Visualization version GIF version | ||
| Description: The rule of modus tollens. The rule says, "if 𝜓 is not true, and 𝜑 implies 𝜓, then 𝜑 must also be not true". Modus tollens is short for "modus tollendo tollens", a Latin phrase that means "the mode that by denying denies" - remark in [Sanford] p. 39. It is also called denying the consequent. Modus tollens is closely related to modus ponens ax-mp 5. Note that this rule is also valid in intuitionistic logic. Inference associated with con3i 154. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| mto.1 | ⊢ ¬ 𝜓 |
| mto.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| mto | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mto.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mto.1 | . . 3 ⊢ ¬ 𝜓 | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜓) |
| 4 | 1, 3 | pm2.65i 194 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt3 201 mtbi 322 intnan 486 intnanr 487 pm3.2ni 880 ru0 2128 nexr 2193 nonconne 2937 ruOLD 3749 reu0 4320 neldifsn 4752 axnulALT 5254 nvel 5266 nfnid 5325 nprrel 5690 0xp 5729 son2lpi 6089 nlim0 6380 snsn0non 6447 onnev 6449 nfunv 6533 dffv3 6836 mpo0 7454 onprc 7734 ordeleqon 7738 onuninsuci 7796 orduninsuc 7799 iprc 7867 poxp2 8099 poxp3 8106 tfrlem13 8335 tfrlem14 8336 tfrlem16 8338 tfr2b 8341 tz7.44lem1 8350 nlim1 8430 nlim2 8431 sdomn2lp 9057 canth2 9071 map2xp 9088 snnen2o 9161 1sdom2dom 9170 fi0 9347 sucprcreg 9530 rankxplim3 9810 alephnbtwn2 10001 alephprc 10028 unialeph 10030 kmlem16 10095 cfsuc 10186 nd1 10516 nd2 10517 canthp1lem2 10582 0nnq 10853 1ne0sr 11025 pnfnre 11191 mnfnre 11193 ine0 11589 recgt0ii 12065 inelr 12152 0nnn 12198 nnunb 12414 nn0nepnf 12499 indstr 12851 1nuz2 12859 0nrp 12964 lsw0 14506 egt2lt3 16150 ruc 16187 odd2np1 16287 divalglem5 16343 bitsf1 16392 0nprm 16624 structcnvcnv 17099 fvsetsid 17114 fnpr2ob 17497 oduclatb 18442 0g0 18567 psgnunilem3 19402 zringndrg 21354 00ply1bas 22100 0ntop 22768 topnex 22859 bwth 23273 ustn0 24084 vitalilem5 25489 deg1nn0clb 25971 aaliou3lem9 26234 sinhalfpilem 26348 logdmn0 26525 dvlog 26536 ppiltx 27063 dchrisum0fno1 27398 nosgnn0i 27547 sltsolem1 27563 nolt02o 27583 nogt01o 27584 noprc 27667 oldirr 27777 leftirr 27778 rightirr 27779 axlowdim1 28862 topnfbey 30371 0ngrp 30413 dmadjrnb 31808 neldifpr1 32435 neldifpr2 32436 1nei 32633 nn0xmulclb 32667 cos9thpinconstr 33754 trisecnconstr 33755 ballotlem2 34453 bnj1304 34782 bnj110 34821 bnj98 34830 bnj1523 35034 subfacp1lem5 35144 msrrcl 35503 linedegen 36104 rankeq1o 36132 neufal 36367 neutru 36368 unqsym1 36386 onpsstopbas 36391 ordcmp 36408 onint1 36410 bj-ru 36905 bj-1nel0 36915 bj-0nelsngl 36932 bj-0nmoore 37073 bj-ccinftydisj 37174 relowlpssretop 37325 poimirlem16 37603 poimirlem17 37604 poimirlem18 37605 poimirlem19 37606 poimirlem20 37607 poimirlem22 37609 poimirlem30 37617 zrdivrng 37920 prtlem400 38836 equidqe 38888 sn-inelr 42448 eldioph4b 42772 jm2.23 42958 ttac 42998 sucomisnotcard 43506 clsk1indlem1 44007 rusbcALT 44401 nimnbi 45130 nimnbi2 45131 fouriersw 46202 cjnpoly 46863 tannpoly 46864 sinnpoly 46865 aibnbna 46880 dtrucor3 48760 fonex 48828 |
| Copyright terms: Public domain | W3C validator |