Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mto | Structured version Visualization version GIF version |
Description: The rule of modus tollens. The rule says, "if 𝜓 is not true, and 𝜑 implies 𝜓, then 𝜑 must also be not true". Modus tollens is short for "modus tollendo tollens", a Latin phrase that means "the mode that by denying denies" - remark in [Sanford] p. 39. It is also called denying the consequent. Modus tollens is closely related to modus ponens ax-mp 5. Note that this rule is also valid in intuitionistic logic. Inference associated with con3i 154. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
mto.1 | ⊢ ¬ 𝜓 |
mto.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
mto | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mto.2 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mto.1 | . . 3 ⊢ ¬ 𝜓 | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜓) |
4 | 1, 3 | pm2.65i 193 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mt3 200 mtbi 322 intnan 487 intnanr 488 pm3.2ni 878 nexr 2185 nonconne 2955 ru 3715 noelOLD 4265 reu0 4292 neldifsn 4725 axnulALT 5228 nvel 5240 nfnid 5298 nprrel 5646 0xp 5685 son2lpi 6033 nlim0 6324 snsn0non 6385 onnev 6387 nfunv 6467 dffv3 6770 mpo0 7360 onprc 7628 ordeleqon 7632 onuninsuci 7687 orduninsuc 7690 iprc 7760 tfrlem13 8221 tfrlem14 8222 tfrlem16 8224 tfr2b 8227 tz7.44lem1 8236 nlim1 8319 nlim2 8320 sdomn2lp 8903 canth2 8917 map2xp 8934 snnen2o 9026 fi0 9179 sucprcreg 9360 rankxplim3 9639 alephnbtwn2 9828 alephprc 9855 unialeph 9857 kmlem16 9921 cfsuc 10013 nd1 10343 nd2 10344 canthp1lem2 10409 0nnq 10680 1ne0sr 10852 pnfnre 11016 mnfnre 11018 ine0 11410 recgt0ii 11881 inelr 11963 0nnn 12009 nnunb 12229 nn0nepnf 12313 indstr 12656 1nuz2 12664 0nrp 12765 lsw0 14268 egt2lt3 15915 ruc 15952 odd2np1 16050 divalglem5 16106 bitsf1 16153 0nprm 16383 structcnvcnv 16854 fvsetsid 16869 fnpr2ob 17269 oduclatb 18225 0g0 18348 psgnunilem3 19104 zringndrg 20690 00ply1bas 21411 0ntop 22054 topnex 22146 bwth 22561 ustn0 23372 vitalilem5 24776 deg1nn0clb 25255 aaliou3lem9 25510 sinhalfpilem 25620 logdmn0 25795 dvlog 25806 ppiltx 26326 dchrisum0fno1 26659 axlowdim1 27327 topnfbey 28833 0ngrp 28873 dmadjrnb 30268 neldifpr1 30881 neldifpr2 30882 1nei 31071 nn0xmulclb 31094 ballotlem2 32455 bnj521 32716 bnj1304 32799 bnj110 32838 bnj98 32847 bnj1523 33051 subfacp1lem5 33146 msrrcl 33505 poxp2 33790 poxp3 33796 nosgnn0i 33862 sltsolem1 33878 nolt02o 33898 nogt01o 33899 noprc 33974 oldirr 34072 leftirr 34073 rightirr 34074 linedegen 34445 rankeq1o 34473 neufal 34595 neutru 34596 unqsym1 34614 amosym1 34615 onpsstopbas 34619 ordcmp 34636 onint1 34638 bj-ru0 35131 bj-ru 35133 bj-1nel0 35144 bj-0nelsngl 35161 bj-0nmoore 35283 bj-ccinftydisj 35384 relowlpssretop 35535 poimirlem16 35793 poimirlem17 35794 poimirlem18 35795 poimirlem19 35796 poimirlem20 35797 poimirlem22 35799 poimirlem30 35807 zrdivrng 36111 prtlem400 36884 equidqe 36936 sn-inelr 40435 eldioph4b 40633 jm2.23 40818 ttac 40858 sucomisnotcard 41151 clsk1indlem1 41655 rusbcALT 42057 fouriersw 43772 aibnbna 44401 dtrucor3 46144 |
Copyright terms: Public domain | W3C validator |