Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mto | Structured version Visualization version GIF version |
Description: The rule of modus tollens. The rule says, "if 𝜓 is not true, and 𝜑 implies 𝜓, then 𝜑 must also be not true". Modus tollens is short for "modus tollendo tollens", a Latin phrase that means "the mode that by denying denies" - remark in [Sanford] p. 39. It is also called denying the consequent. Modus tollens is closely related to modus ponens ax-mp 5. Note that this rule is also valid in intuitionistic logic. Inference associated with con3i 154. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
mto.1 | ⊢ ¬ 𝜓 |
mto.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
mto | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mto.2 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mto.1 | . . 3 ⊢ ¬ 𝜓 | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜓) |
4 | 1, 3 | pm2.65i 193 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mt3 200 mtbi 321 intnan 486 intnanr 487 pm3.2ni 877 nexr 2187 nonconne 2954 ru 3710 noelOLD 4262 reu0 4289 neldifsn 4722 axnulALT 5223 nvel 5235 nfnid 5293 nprrel 5637 0xp 5675 son2lpi 6022 nlim0 6309 snsn0non 6370 onnev 6372 nfunv 6451 dffv3 6752 mpo0 7338 onprc 7605 ordeleqon 7609 onuninsuci 7662 orduninsuc 7665 iprc 7734 tfrlem13 8192 tfrlem14 8193 tfrlem16 8195 tfr2b 8198 tz7.44lem1 8207 sdomn2lp 8852 canth2 8866 map2xp 8883 fi0 9109 sucprcreg 9290 rankxplim3 9570 alephnbtwn2 9759 alephprc 9786 unialeph 9788 kmlem16 9852 cfsuc 9944 nd1 10274 nd2 10275 canthp1lem2 10340 0nnq 10611 1ne0sr 10783 pnfnre 10947 mnfnre 10949 ine0 11340 recgt0ii 11811 inelr 11893 0nnn 11939 nnunb 12159 nn0nepnf 12243 indstr 12585 1nuz2 12593 0nrp 12694 lsw0 14196 egt2lt3 15843 ruc 15880 odd2np1 15978 divalglem5 16034 bitsf1 16081 0nprm 16311 structcnvcnv 16782 fvsetsid 16797 fnpr2ob 17186 oduclatb 18140 0g0 18263 psgnunilem3 19019 zringndrg 20602 00ply1bas 21321 0ntop 21962 topnex 22054 bwth 22469 ustn0 23280 vitalilem5 24681 deg1nn0clb 25160 aaliou3lem9 25415 sinhalfpilem 25525 logdmn0 25700 dvlog 25711 ppiltx 26231 dchrisum0fno1 26564 axlowdim1 27230 topnfbey 28734 0ngrp 28774 dmadjrnb 30169 neldifpr1 30782 neldifpr2 30783 1nei 30973 nn0xmulclb 30996 ballotlem2 32355 bnj521 32616 bnj1304 32699 bnj110 32738 bnj98 32747 bnj1523 32951 subfacp1lem5 33046 msrrcl 33405 poxp2 33717 poxp3 33723 nosgnn0i 33789 sltsolem1 33805 nolt02o 33825 nogt01o 33826 noprc 33901 oldirr 33999 leftirr 34000 rightirr 34001 linedegen 34372 rankeq1o 34400 neufal 34522 neutru 34523 unqsym1 34541 amosym1 34542 onpsstopbas 34546 ordcmp 34563 onint1 34565 bj-ru0 35058 bj-ru 35060 bj-1nel0 35071 bj-0nelsngl 35088 bj-0nmoore 35210 bj-ccinftydisj 35311 relowlpssretop 35462 poimirlem16 35720 poimirlem17 35721 poimirlem18 35722 poimirlem19 35723 poimirlem20 35724 poimirlem22 35726 poimirlem30 35734 zrdivrng 36038 prtlem400 36811 equidqe 36863 sn-inelr 40356 eldioph4b 40549 jm2.23 40734 ttac 40774 clsk1indlem1 41544 rusbcALT 41946 fouriersw 43662 aibnbna 44288 dtrucor3 46032 |
Copyright terms: Public domain | W3C validator |