| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mto | Structured version Visualization version GIF version | ||
| Description: The rule of modus tollens. The rule says, "if 𝜓 is not true, and 𝜑 implies 𝜓, then 𝜑 must also be not true". Modus tollens is short for "modus tollendo tollens", a Latin phrase that means "the mode that by denying denies" - remark in [Sanford] p. 39. It is also called denying the consequent. Modus tollens is closely related to modus ponens ax-mp 5. Note that this rule is also valid in intuitionistic logic. Inference associated with con3i 154. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| mto.1 | ⊢ ¬ 𝜓 |
| mto.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| mto | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mto.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mto.1 | . . 3 ⊢ ¬ 𝜓 | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜓) |
| 4 | 1, 3 | pm2.65i 194 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt3 201 mtbi 322 intnan 486 intnanr 487 pm3.2ni 880 ru0 2127 nexr 2192 nonconne 2944 ruOLD 3764 reu0 4336 neldifsn 4768 axnulALT 5274 nvel 5286 nfnid 5345 nprrel 5713 0xp 5753 son2lpi 6117 nlim0 6412 snsn0non 6478 onnev 6480 nfunv 6568 dffv3 6871 mpo0 7490 onprc 7770 ordeleqon 7774 onuninsuci 7833 orduninsuc 7836 iprc 7905 poxp2 8140 poxp3 8147 tfrlem13 8402 tfrlem14 8403 tfrlem16 8405 tfr2b 8408 tz7.44lem1 8417 nlim1 8499 nlim2 8500 sdomn2lp 9128 canth2 9142 map2xp 9159 snnen2o 9243 1sdom2dom 9253 fi0 9430 sucprcreg 9613 rankxplim3 9893 alephnbtwn2 10084 alephprc 10111 unialeph 10113 kmlem16 10178 cfsuc 10269 nd1 10599 nd2 10600 canthp1lem2 10665 0nnq 10936 1ne0sr 11108 pnfnre 11274 mnfnre 11276 ine0 11670 recgt0ii 12146 inelr 12228 0nnn 12274 nnunb 12495 nn0nepnf 12580 indstr 12930 1nuz2 12938 0nrp 13042 lsw0 14581 egt2lt3 16222 ruc 16259 odd2np1 16358 divalglem5 16414 bitsf1 16463 0nprm 16695 structcnvcnv 17170 fvsetsid 17185 fnpr2ob 17570 oduclatb 18515 0g0 18640 psgnunilem3 19475 zringndrg 21427 00ply1bas 22173 0ntop 22841 topnex 22932 bwth 23346 ustn0 24157 vitalilem5 25563 deg1nn0clb 26045 aaliou3lem9 26308 sinhalfpilem 26422 logdmn0 26599 dvlog 26610 ppiltx 27137 dchrisum0fno1 27472 nosgnn0i 27621 sltsolem1 27637 nolt02o 27657 nogt01o 27658 noprc 27741 oldirr 27845 leftirr 27846 rightirr 27847 axlowdim1 28884 topnfbey 30396 0ngrp 30438 dmadjrnb 31833 neldifpr1 32460 neldifpr2 32461 1nei 32660 nn0xmulclb 32694 ballotlem2 34467 bnj1304 34796 bnj110 34835 bnj98 34844 bnj1523 35048 subfacp1lem5 35152 msrrcl 35511 linedegen 36107 rankeq1o 36135 neufal 36370 neutru 36371 unqsym1 36389 onpsstopbas 36394 ordcmp 36411 onint1 36413 bj-ru 36908 bj-1nel0 36918 bj-0nelsngl 36935 bj-0nmoore 37076 bj-ccinftydisj 37177 relowlpssretop 37328 poimirlem16 37606 poimirlem17 37607 poimirlem18 37608 poimirlem19 37609 poimirlem20 37610 poimirlem22 37612 poimirlem30 37620 zrdivrng 37923 prtlem400 38834 equidqe 38886 sn-inelr 42457 eldioph4b 42781 jm2.23 42967 ttac 43007 sucomisnotcard 43515 clsk1indlem1 44016 rusbcALT 44411 nimnbi 45135 nimnbi2 45136 fouriersw 46208 aibnbna 46883 dtrucor3 48726 fonex 48790 |
| Copyright terms: Public domain | W3C validator |