![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mto | Structured version Visualization version GIF version |
Description: The rule of modus tollens. The rule says, "if 𝜓 is not true, and 𝜑 implies 𝜓, then 𝜑 must also be not true". Modus tollens is short for "modus tollendo tollens", a Latin phrase that means "the mode that by denying denies" - remark in [Sanford] p. 39. It is also called denying the consequent. Modus tollens is closely related to modus ponens ax-mp 5. Note that this rule is also valid in intuitionistic logic. Inference associated with con3i 154. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
mto.1 | ⊢ ¬ 𝜓 |
mto.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
mto | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mto.2 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mto.1 | . . 3 ⊢ ¬ 𝜓 | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜓) |
4 | 1, 3 | pm2.65i 194 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mt3 201 mtbi 322 intnan 486 intnanr 487 pm3.2ni 879 ru0 2127 nexr 2193 nonconne 2958 ruOLD 3803 noelOLD 4361 reu0 4384 neldifsn 4817 axnulALT 5322 nvel 5334 nfnid 5393 nprrel 5759 0xp 5798 son2lpi 6160 nlim0 6454 snsn0non 6520 onnev 6522 nfunv 6611 dffv3 6916 mpo0 7535 onprc 7813 ordeleqon 7817 onuninsuci 7877 orduninsuc 7880 iprc 7951 poxp2 8184 poxp3 8191 tfrlem13 8446 tfrlem14 8447 tfrlem16 8449 tfr2b 8452 tz7.44lem1 8461 nlim1 8545 nlim2 8546 sdomn2lp 9182 canth2 9196 map2xp 9213 snnen2o 9300 1sdom2dom 9310 fi0 9489 sucprcreg 9670 rankxplim3 9950 alephnbtwn2 10141 alephprc 10168 unialeph 10170 kmlem16 10235 cfsuc 10326 nd1 10656 nd2 10657 canthp1lem2 10722 0nnq 10993 1ne0sr 11165 pnfnre 11331 mnfnre 11333 ine0 11725 recgt0ii 12201 inelr 12283 0nnn 12329 nnunb 12549 nn0nepnf 12633 indstr 12981 1nuz2 12989 0nrp 13092 lsw0 14613 egt2lt3 16254 ruc 16291 odd2np1 16389 divalglem5 16445 bitsf1 16492 0nprm 16725 structcnvcnv 17200 fvsetsid 17215 fnpr2ob 17618 oduclatb 18577 0g0 18702 psgnunilem3 19538 zringndrg 21502 00ply1bas 22262 0ntop 22932 topnex 23024 bwth 23439 ustn0 24250 vitalilem5 25666 deg1nn0clb 26149 aaliou3lem9 26410 sinhalfpilem 26523 logdmn0 26700 dvlog 26711 ppiltx 27238 dchrisum0fno1 27573 nosgnn0i 27722 sltsolem1 27738 nolt02o 27758 nogt01o 27759 noprc 27842 oldirr 27946 leftirr 27947 rightirr 27948 axlowdim1 28992 topnfbey 30501 0ngrp 30543 dmadjrnb 31938 neldifpr1 32561 neldifpr2 32562 1nei 32750 nn0xmulclb 32778 ballotlem2 34453 bnj1304 34795 bnj110 34834 bnj98 34843 bnj1523 35047 subfacp1lem5 35152 msrrcl 35511 linedegen 36107 rankeq1o 36135 neufal 36372 neutru 36373 unqsym1 36391 onpsstopbas 36396 ordcmp 36413 onint1 36415 bj-ru 36910 bj-1nel0 36920 bj-0nelsngl 36937 bj-0nmoore 37078 bj-ccinftydisj 37179 relowlpssretop 37330 poimirlem16 37596 poimirlem17 37597 poimirlem18 37598 poimirlem19 37599 poimirlem20 37600 poimirlem22 37602 poimirlem30 37610 zrdivrng 37913 prtlem400 38826 equidqe 38878 sn-inelr 42443 eldioph4b 42767 jm2.23 42953 ttac 42993 sucomisnotcard 43506 clsk1indlem1 44007 rusbcALT 44408 nimnbi 45069 nimnbi2 45070 fouriersw 46152 aibnbna 46821 dtrucor3 48532 |
Copyright terms: Public domain | W3C validator |