| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mto | Structured version Visualization version GIF version | ||
| Description: The rule of modus tollens. The rule says, "if 𝜓 is not true, and 𝜑 implies 𝜓, then 𝜑 must also be not true". Modus tollens is short for "modus tollendo tollens", a Latin phrase that means "the mode that by denying denies" - remark in [Sanford] p. 39. It is also called denying the consequent. Modus tollens is closely related to modus ponens ax-mp 5. Note that this rule is also valid in intuitionistic logic. Inference associated with con3i 154. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| mto.1 | ⊢ ¬ 𝜓 |
| mto.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| mto | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mto.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mto.1 | . . 3 ⊢ ¬ 𝜓 | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜓) |
| 4 | 1, 3 | pm2.65i 194 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt3 201 mtbi 322 intnan 486 intnanr 487 pm3.2ni 880 ru0 2128 nexr 2193 nonconne 2938 ruOLD 3755 reu0 4327 neldifsn 4759 axnulALT 5262 nvel 5274 nfnid 5333 nprrel 5700 0xp 5740 son2lpi 6104 nlim0 6395 snsn0non 6462 onnev 6464 nfunv 6552 dffv3 6857 mpo0 7477 onprc 7757 ordeleqon 7761 onuninsuci 7819 orduninsuc 7822 iprc 7890 poxp2 8125 poxp3 8132 tfrlem13 8361 tfrlem14 8362 tfrlem16 8364 tfr2b 8367 tz7.44lem1 8376 nlim1 8456 nlim2 8457 sdomn2lp 9086 canth2 9100 map2xp 9117 snnen2o 9191 1sdom2dom 9201 fi0 9378 sucprcreg 9561 rankxplim3 9841 alephnbtwn2 10032 alephprc 10059 unialeph 10061 kmlem16 10126 cfsuc 10217 nd1 10547 nd2 10548 canthp1lem2 10613 0nnq 10884 1ne0sr 11056 pnfnre 11222 mnfnre 11224 ine0 11620 recgt0ii 12096 inelr 12183 0nnn 12229 nnunb 12445 nn0nepnf 12530 indstr 12882 1nuz2 12890 0nrp 12995 lsw0 14537 egt2lt3 16181 ruc 16218 odd2np1 16318 divalglem5 16374 bitsf1 16423 0nprm 16655 structcnvcnv 17130 fvsetsid 17145 fnpr2ob 17528 oduclatb 18473 0g0 18598 psgnunilem3 19433 zringndrg 21385 00ply1bas 22131 0ntop 22799 topnex 22890 bwth 23304 ustn0 24115 vitalilem5 25520 deg1nn0clb 26002 aaliou3lem9 26265 sinhalfpilem 26379 logdmn0 26556 dvlog 26567 ppiltx 27094 dchrisum0fno1 27429 nosgnn0i 27578 sltsolem1 27594 nolt02o 27614 nogt01o 27615 noprc 27698 oldirr 27808 leftirr 27809 rightirr 27810 axlowdim1 28893 topnfbey 30405 0ngrp 30447 dmadjrnb 31842 neldifpr1 32469 neldifpr2 32470 1nei 32667 nn0xmulclb 32701 cos9thpinconstr 33788 trisecnconstr 33789 ballotlem2 34487 bnj1304 34816 bnj110 34855 bnj98 34864 bnj1523 35068 subfacp1lem5 35178 msrrcl 35537 linedegen 36138 rankeq1o 36166 neufal 36401 neutru 36402 unqsym1 36420 onpsstopbas 36425 ordcmp 36442 onint1 36444 bj-ru 36939 bj-1nel0 36949 bj-0nelsngl 36966 bj-0nmoore 37107 bj-ccinftydisj 37208 relowlpssretop 37359 poimirlem16 37637 poimirlem17 37638 poimirlem18 37639 poimirlem19 37640 poimirlem20 37641 poimirlem22 37643 poimirlem30 37651 zrdivrng 37954 prtlem400 38870 equidqe 38922 sn-inelr 42482 eldioph4b 42806 jm2.23 42992 ttac 43032 sucomisnotcard 43540 clsk1indlem1 44041 rusbcALT 44435 nimnbi 45164 nimnbi2 45165 fouriersw 46236 aibnbna 46911 dtrucor3 48791 fonex 48859 |
| Copyright terms: Public domain | W3C validator |