| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mto | Structured version Visualization version GIF version | ||
| Description: The rule of modus tollens. The rule says, "if 𝜓 is not true, and 𝜑 implies 𝜓, then 𝜑 must also be not true". Modus tollens is short for "modus tollendo tollens", a Latin phrase that means "the mode that by denying denies" - remark in [Sanford] p. 39. It is also called denying the consequent. Modus tollens is closely related to modus ponens ax-mp 5. Note that this rule is also valid in intuitionistic logic. Inference associated with con3i 154. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| mto.1 | ⊢ ¬ 𝜓 |
| mto.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| mto | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mto.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mto.1 | . . 3 ⊢ ¬ 𝜓 | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜓) |
| 4 | 1, 3 | pm2.65i 194 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt3 201 mtbi 322 intnan 486 intnanr 487 pm3.2ni 880 ru0 2128 nexr 2193 nonconne 2937 ruOLD 3741 reu0 4312 neldifsn 4743 axnulALT 5243 nvel 5255 nfnid 5314 nprrel 5678 0xp 5718 son2lpi 6077 nlim0 6367 snsn0non 6433 onnev 6435 nfunv 6515 dffv3 6818 mpo0 7434 onprc 7714 ordeleqon 7718 onuninsuci 7773 orduninsuc 7776 iprc 7844 poxp2 8076 poxp3 8083 tfrlem13 8312 tfrlem14 8313 tfrlem16 8315 tfr2b 8318 tz7.44lem1 8327 nlim1 8407 nlim2 8408 sdomn2lp 9033 canth2 9047 map2xp 9064 snnen2o 9134 1sdom2dom 9143 fi0 9310 sucprcreg 9496 rankxplim3 9777 alephnbtwn2 9966 alephprc 9993 unialeph 9995 kmlem16 10060 cfsuc 10151 nd1 10481 nd2 10482 canthp1lem2 10547 0nnq 10818 1ne0sr 10990 pnfnre 11156 mnfnre 11158 ine0 11555 recgt0ii 12031 inelr 12118 0nnn 12164 nnunb 12380 nn0nepnf 12465 indstr 12817 1nuz2 12825 0nrp 12930 lsw0 14472 egt2lt3 16115 ruc 16152 odd2np1 16252 divalglem5 16308 bitsf1 16357 0nprm 16589 structcnvcnv 17064 fvsetsid 17079 fnpr2ob 17462 oduclatb 18413 0g0 18538 psgnunilem3 19375 zringndrg 21375 00ply1bas 22122 0ntop 22790 topnex 22881 bwth 23295 ustn0 24106 vitalilem5 25511 deg1nn0clb 25993 aaliou3lem9 26256 sinhalfpilem 26370 logdmn0 26547 dvlog 26558 ppiltx 27085 dchrisum0fno1 27420 nosgnn0i 27569 sltsolem1 27585 nolt02o 27605 nogt01o 27606 noprc 27690 oldirr 27804 leftirr 27805 rightirr 27806 axlowdim1 28904 topnfbey 30413 0ngrp 30455 dmadjrnb 31850 neldifpr1 32477 neldifpr2 32478 1nei 32680 nn0xmulclb 32714 cos9thpinconstr 33758 trisecnconstr 33759 ballotlem2 34457 bnj1304 34786 bnj110 34825 bnj98 34834 bnj1523 35038 subfacp1lem5 35161 msrrcl 35520 linedegen 36121 rankeq1o 36149 neufal 36384 neutru 36385 unqsym1 36403 onpsstopbas 36408 ordcmp 36425 onint1 36427 bj-ru 36922 bj-1nel0 36932 bj-0nelsngl 36949 bj-0nmoore 37090 bj-ccinftydisj 37191 relowlpssretop 37342 poimirlem16 37620 poimirlem17 37621 poimirlem18 37622 poimirlem19 37623 poimirlem20 37624 poimirlem22 37626 poimirlem30 37634 zrdivrng 37937 prtlem400 38853 equidqe 38905 sn-inelr 42464 eldioph4b 42788 jm2.23 42973 ttac 43013 sucomisnotcard 43521 clsk1indlem1 44022 rusbcALT 44416 nimnbi 45145 nimnbi2 45146 fouriersw 46216 cjnpoly 46877 tannpoly 46878 sinnpoly 46879 aibnbna 46894 dtrucor3 48787 fonex 48855 |
| Copyright terms: Public domain | W3C validator |