![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mto | Structured version Visualization version GIF version |
Description: The rule of modus tollens. The rule says, "if 𝜓 is not true, and 𝜑 implies 𝜓, then 𝜑 must also be not true". Modus tollens is short for "modus tollendo tollens", a Latin phrase that means "the mode that by denying denies" - remark in [Sanford] p. 39. It is also called denying the consequent. Modus tollens is closely related to modus ponens ax-mp 5. Note that this rule is also valid in intuitionistic logic. Inference associated with con3i 154. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
mto.1 | ⊢ ¬ 𝜓 |
mto.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
mto | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mto.2 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mto.1 | . . 3 ⊢ ¬ 𝜓 | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜓) |
4 | 1, 3 | pm2.65i 193 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mt3 200 mtbi 322 intnan 488 intnanr 489 pm3.2ni 880 nexr 2186 nonconne 2953 ru 3777 noelOLD 4332 reu0 4359 neldifsn 4796 axnulALT 5305 nvel 5317 nfnid 5374 nprrel 5736 0xp 5775 son2lpi 6130 nlim0 6424 snsn0non 6490 onnev 6492 nfunv 6582 dffv3 6888 mpo0 7494 onprc 7765 ordeleqon 7769 onuninsuci 7829 orduninsuc 7832 iprc 7904 poxp2 8129 poxp3 8136 tfrlem13 8390 tfrlem14 8391 tfrlem16 8393 tfr2b 8396 tz7.44lem1 8405 nlim1 8489 nlim2 8490 sdomn2lp 9116 canth2 9130 map2xp 9147 snnen2o 9237 1sdom2dom 9247 fi0 9415 sucprcreg 9596 rankxplim3 9876 alephnbtwn2 10067 alephprc 10094 unialeph 10096 kmlem16 10160 cfsuc 10252 nd1 10582 nd2 10583 canthp1lem2 10648 0nnq 10919 1ne0sr 11091 pnfnre 11255 mnfnre 11257 ine0 11649 recgt0ii 12120 inelr 12202 0nnn 12248 nnunb 12468 nn0nepnf 12552 indstr 12900 1nuz2 12908 0nrp 13009 lsw0 14515 egt2lt3 16149 ruc 16186 odd2np1 16284 divalglem5 16340 bitsf1 16387 0nprm 16615 structcnvcnv 17086 fvsetsid 17101 fnpr2ob 17504 oduclatb 18460 0g0 18583 psgnunilem3 19364 zringndrg 21038 00ply1bas 21762 0ntop 22407 topnex 22499 bwth 22914 ustn0 23725 vitalilem5 25129 deg1nn0clb 25608 aaliou3lem9 25863 sinhalfpilem 25973 logdmn0 26148 dvlog 26159 ppiltx 26681 dchrisum0fno1 27014 nosgnn0i 27162 sltsolem1 27178 nolt02o 27198 nogt01o 27199 noprc 27281 oldirr 27384 leftirr 27385 rightirr 27386 axlowdim1 28217 topnfbey 29722 0ngrp 29764 dmadjrnb 31159 neldifpr1 31770 neldifpr2 31771 1nei 31961 nn0xmulclb 31984 ballotlem2 33487 bnj1304 33830 bnj110 33869 bnj98 33878 bnj1523 34082 subfacp1lem5 34175 msrrcl 34534 linedegen 35115 rankeq1o 35143 neufal 35291 neutru 35292 unqsym1 35310 onpsstopbas 35315 ordcmp 35332 onint1 35334 bj-ru0 35823 bj-ru 35825 bj-1nel0 35835 bj-0nelsngl 35852 bj-0nmoore 35993 bj-ccinftydisj 36094 relowlpssretop 36245 poimirlem16 36504 poimirlem17 36505 poimirlem18 36506 poimirlem19 36507 poimirlem20 36508 poimirlem22 36510 poimirlem30 36518 zrdivrng 36821 prtlem400 37740 equidqe 37792 sn-inelr 41338 eldioph4b 41549 jm2.23 41735 ttac 41775 sucomisnotcard 42295 clsk1indlem1 42796 rusbcALT 43198 nimnbi 43858 nimnbi2 43859 fouriersw 44947 aibnbna 45616 dtrucor3 47484 |
Copyright terms: Public domain | W3C validator |