| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mto | Structured version Visualization version GIF version | ||
| Description: The rule of modus tollens. The rule says, "if 𝜓 is not true, and 𝜑 implies 𝜓, then 𝜑 must also be not true". Modus tollens is short for "modus tollendo tollens", a Latin phrase that means "the mode that by denying denies" - remark in [Sanford] p. 39. It is also called denying the consequent. Modus tollens is closely related to modus ponens ax-mp 5. Note that this rule is also valid in intuitionistic logic. Inference associated with con3i 154. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| mto.1 | ⊢ ¬ 𝜓 |
| mto.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| mto | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mto.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mto.1 | . . 3 ⊢ ¬ 𝜓 | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜓) |
| 4 | 1, 3 | pm2.65i 194 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt3 201 mtbi 322 intnan 486 intnanr 487 pm3.2ni 880 ru0 2128 nexr 2193 nonconne 2937 ruOLD 3749 reu0 4320 neldifsn 4752 axnulALT 5254 nvel 5266 nfnid 5325 nprrel 5690 0xp 5729 son2lpi 6089 nlim0 6380 snsn0non 6447 onnev 6449 nfunv 6533 dffv3 6836 mpo0 7454 onprc 7734 ordeleqon 7738 onuninsuci 7796 orduninsuc 7799 iprc 7867 poxp2 8099 poxp3 8106 tfrlem13 8335 tfrlem14 8336 tfrlem16 8338 tfr2b 8341 tz7.44lem1 8350 nlim1 8430 nlim2 8431 sdomn2lp 9057 canth2 9071 map2xp 9088 snnen2o 9161 1sdom2dom 9170 fi0 9347 sucprcreg 9530 rankxplim3 9810 alephnbtwn2 10001 alephprc 10028 unialeph 10030 kmlem16 10095 cfsuc 10186 nd1 10516 nd2 10517 canthp1lem2 10582 0nnq 10853 1ne0sr 11025 pnfnre 11191 mnfnre 11193 ine0 11589 recgt0ii 12065 inelr 12152 0nnn 12198 nnunb 12414 nn0nepnf 12499 indstr 12851 1nuz2 12859 0nrp 12964 lsw0 14506 egt2lt3 16150 ruc 16187 odd2np1 16287 divalglem5 16343 bitsf1 16392 0nprm 16624 structcnvcnv 17099 fvsetsid 17114 fnpr2ob 17497 oduclatb 18448 0g0 18573 psgnunilem3 19410 zringndrg 21410 00ply1bas 22157 0ntop 22825 topnex 22916 bwth 23330 ustn0 24141 vitalilem5 25546 deg1nn0clb 26028 aaliou3lem9 26291 sinhalfpilem 26405 logdmn0 26582 dvlog 26593 ppiltx 27120 dchrisum0fno1 27455 nosgnn0i 27604 sltsolem1 27620 nolt02o 27640 nogt01o 27641 noprc 27725 oldirr 27839 leftirr 27840 rightirr 27841 axlowdim1 28939 topnfbey 30448 0ngrp 30490 dmadjrnb 31885 neldifpr1 32512 neldifpr2 32513 1nei 32710 nn0xmulclb 32744 cos9thpinconstr 33774 trisecnconstr 33775 ballotlem2 34473 bnj1304 34802 bnj110 34841 bnj98 34850 bnj1523 35054 subfacp1lem5 35164 msrrcl 35523 linedegen 36124 rankeq1o 36152 neufal 36387 neutru 36388 unqsym1 36406 onpsstopbas 36411 ordcmp 36428 onint1 36430 bj-ru 36925 bj-1nel0 36935 bj-0nelsngl 36952 bj-0nmoore 37093 bj-ccinftydisj 37194 relowlpssretop 37345 poimirlem16 37623 poimirlem17 37624 poimirlem18 37625 poimirlem19 37626 poimirlem20 37627 poimirlem22 37629 poimirlem30 37637 zrdivrng 37940 prtlem400 38856 equidqe 38908 sn-inelr 42468 eldioph4b 42792 jm2.23 42978 ttac 43018 sucomisnotcard 43526 clsk1indlem1 44027 rusbcALT 44421 nimnbi 45150 nimnbi2 45151 fouriersw 46222 cjnpoly 46883 tannpoly 46884 sinnpoly 46885 aibnbna 46900 dtrucor3 48780 fonex 48848 |
| Copyright terms: Public domain | W3C validator |