| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mto | Structured version Visualization version GIF version | ||
| Description: The rule of modus tollens. The rule says, "if 𝜓 is not true, and 𝜑 implies 𝜓, then 𝜑 must also be not true". Modus tollens is short for "modus tollendo tollens", a Latin phrase that means "the mode that by denying denies" - remark in [Sanford] p. 39. It is also called denying the consequent. Modus tollens is closely related to modus ponens ax-mp 5. Note that this rule is also valid in intuitionistic logic. Inference associated with con3i 154. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| mto.1 | ⊢ ¬ 𝜓 |
| mto.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| mto | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mto.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mto.1 | . . 3 ⊢ ¬ 𝜓 | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜓) |
| 4 | 1, 3 | pm2.65i 194 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt3 201 mtbi 322 intnan 486 intnanr 487 pm3.2ni 881 ru0 2127 nexr 2192 nonconne 2952 ruOLD 3787 reu0 4361 neldifsn 4792 axnulALT 5304 nvel 5316 nfnid 5375 nprrel 5744 0xp 5784 son2lpi 6148 nlim0 6443 snsn0non 6509 onnev 6511 nfunv 6599 dffv3 6902 mpo0 7518 onprc 7798 ordeleqon 7802 onuninsuci 7861 orduninsuc 7864 iprc 7933 poxp2 8168 poxp3 8175 tfrlem13 8430 tfrlem14 8431 tfrlem16 8433 tfr2b 8436 tz7.44lem1 8445 nlim1 8527 nlim2 8528 sdomn2lp 9156 canth2 9170 map2xp 9187 snnen2o 9273 1sdom2dom 9283 fi0 9460 sucprcreg 9641 rankxplim3 9921 alephnbtwn2 10112 alephprc 10139 unialeph 10141 kmlem16 10206 cfsuc 10297 nd1 10627 nd2 10628 canthp1lem2 10693 0nnq 10964 1ne0sr 11136 pnfnre 11302 mnfnre 11304 ine0 11698 recgt0ii 12174 inelr 12256 0nnn 12302 nnunb 12522 nn0nepnf 12607 indstr 12958 1nuz2 12966 0nrp 13070 lsw0 14603 egt2lt3 16242 ruc 16279 odd2np1 16378 divalglem5 16434 bitsf1 16483 0nprm 16715 structcnvcnv 17190 fvsetsid 17205 fnpr2ob 17603 oduclatb 18552 0g0 18677 psgnunilem3 19514 zringndrg 21479 00ply1bas 22241 0ntop 22911 topnex 23003 bwth 23418 ustn0 24229 vitalilem5 25647 deg1nn0clb 26129 aaliou3lem9 26392 sinhalfpilem 26505 logdmn0 26682 dvlog 26693 ppiltx 27220 dchrisum0fno1 27555 nosgnn0i 27704 sltsolem1 27720 nolt02o 27740 nogt01o 27741 noprc 27824 oldirr 27928 leftirr 27929 rightirr 27930 axlowdim1 28974 topnfbey 30488 0ngrp 30530 dmadjrnb 31925 neldifpr1 32551 neldifpr2 32552 1nei 32747 nn0xmulclb 32775 ballotlem2 34491 bnj1304 34833 bnj110 34872 bnj98 34881 bnj1523 35085 subfacp1lem5 35189 msrrcl 35548 linedegen 36144 rankeq1o 36172 neufal 36407 neutru 36408 unqsym1 36426 onpsstopbas 36431 ordcmp 36448 onint1 36450 bj-ru 36945 bj-1nel0 36955 bj-0nelsngl 36972 bj-0nmoore 37113 bj-ccinftydisj 37214 relowlpssretop 37365 poimirlem16 37643 poimirlem17 37644 poimirlem18 37645 poimirlem19 37646 poimirlem20 37647 poimirlem22 37649 poimirlem30 37657 zrdivrng 37960 prtlem400 38871 equidqe 38923 sn-inelr 42497 eldioph4b 42822 jm2.23 43008 ttac 43048 sucomisnotcard 43557 clsk1indlem1 44058 rusbcALT 44458 nimnbi 45168 nimnbi2 45169 fouriersw 46246 aibnbna 46918 dtrucor3 48719 |
| Copyright terms: Public domain | W3C validator |