| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mto | Structured version Visualization version GIF version | ||
| Description: The rule of modus tollens. The rule says, "if 𝜓 is not true, and 𝜑 implies 𝜓, then 𝜑 must also be not true". Modus tollens is short for "modus tollendo tollens", a Latin phrase that means "the mode that by denying denies" - remark in [Sanford] p. 39. It is also called denying the consequent. Modus tollens is closely related to modus ponens ax-mp 5. Note that this rule is also valid in intuitionistic logic. Inference associated with con3i 154. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| mto.1 | ⊢ ¬ 𝜓 |
| mto.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| mto | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mto.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mto.1 | . . 3 ⊢ ¬ 𝜓 | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜓) |
| 4 | 1, 3 | pm2.65i 194 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt3 201 mtbi 322 intnan 486 intnanr 487 pm3.2ni 880 ru0 2130 nexr 2195 nonconne 2940 ruOLD 3735 reu0 4308 neldifsn 4741 axnulALT 5240 nvel 5252 nfnid 5311 nprrel 5673 0xp 5713 xp0 5714 son2lpi 6074 nlim0 6366 snsn0non 6432 onnev 6434 nfunv 6514 dffv3 6818 mpo0 7431 onprc 7711 ordeleqon 7715 onuninsuci 7770 orduninsuc 7773 iprc 7841 poxp2 8073 poxp3 8080 tfrlem13 8309 tfrlem14 8310 tfrlem16 8312 tfr2b 8315 tz7.44lem1 8324 nlim1 8404 nlim2 8405 sdomn2lp 9029 canth2 9043 map2xp 9060 snnen2o 9129 1sdom2dom 9138 fi0 9304 sucprcreg 9490 rankxplim3 9774 alephnbtwn2 9963 alephprc 9990 unialeph 9992 kmlem16 10057 cfsuc 10148 nd1 10478 nd2 10479 canthp1lem2 10544 0nnq 10815 1ne0sr 10987 pnfnre 11153 mnfnre 11155 ine0 11552 recgt0ii 12028 inelr 12115 0nnn 12161 nnunb 12377 nn0nepnf 12462 indstr 12814 1nuz2 12822 0nrp 12927 lsw0 14472 egt2lt3 16115 ruc 16152 odd2np1 16252 divalglem5 16308 bitsf1 16357 0nprm 16589 structcnvcnv 17064 fvsetsid 17079 fnpr2ob 17462 oduclatb 18413 0g0 18572 psgnunilem3 19408 zringndrg 21405 00ply1bas 22152 0ntop 22820 topnex 22911 bwth 23325 ustn0 24136 vitalilem5 25540 deg1nn0clb 26022 aaliou3lem9 26285 sinhalfpilem 26399 logdmn0 26576 dvlog 26587 ppiltx 27114 dchrisum0fno1 27449 nosgnn0i 27598 sltsolem1 27614 nolt02o 27634 nogt01o 27635 noprc 27719 oldirr 27835 leftirr 27836 rightirr 27837 axlowdim1 28937 topnfbey 30449 0ngrp 30491 dmadjrnb 31886 neldifpr1 32513 neldifpr2 32514 1nei 32720 nn0xmulclb 32754 cos9thpinconstr 33804 trisecnconstr 33805 ballotlem2 34502 bnj1304 34831 bnj110 34870 bnj98 34879 bnj1523 35083 subfacp1lem5 35228 msrrcl 35587 linedegen 36187 rankeq1o 36215 neufal 36450 neutru 36451 unqsym1 36469 onpsstopbas 36474 ordcmp 36491 onint1 36493 bj-ru 36988 bj-1nel0 36998 bj-0nelsngl 37015 bj-0nmoore 37156 bj-ccinftydisj 37257 relowlpssretop 37408 poimirlem16 37686 poimirlem17 37687 poimirlem18 37688 poimirlem19 37689 poimirlem20 37690 poimirlem22 37692 poimirlem30 37700 zrdivrng 38003 prtlem400 38979 equidqe 39031 sn-inelr 42590 eldioph4b 42914 jm2.23 43099 ttac 43139 sucomisnotcard 43647 clsk1indlem1 44148 rusbcALT 44541 nimnbi 45270 nimnbi2 45271 fouriersw 46339 nthrucw 46994 cjnpoly 46999 tannpoly 47000 sinnpoly 47001 aibnbna 47016 dtrucor3 48909 fonex 48977 |
| Copyright terms: Public domain | W3C validator |