Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mto | Structured version Visualization version GIF version |
Description: The rule of modus tollens. The rule says, "if 𝜓 is not true, and 𝜑 implies 𝜓, then 𝜑 must also be not true". Modus tollens is short for "modus tollendo tollens", a Latin phrase that means "the mode that by denying denies" - remark in [Sanford] p. 39. It is also called denying the consequent. Modus tollens is closely related to modus ponens ax-mp 5. Note that this rule is also valid in intuitionistic logic. Inference associated with con3i 154. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
mto.1 | ⊢ ¬ 𝜓 |
mto.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
mto | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mto.2 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mto.1 | . . 3 ⊢ ¬ 𝜓 | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜓) |
4 | 1, 3 | pm2.65i 193 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mt3 200 mtbi 322 intnan 487 intnanr 488 pm3.2ni 878 nexr 2189 nonconne 2957 ru 3719 noelOLD 4271 reu0 4298 neldifsn 4731 axnulALT 5232 nvel 5244 nfnid 5302 nprrel 5647 0xp 5685 son2lpi 6032 nlim0 6323 snsn0non 6384 onnev 6386 nfunv 6465 dffv3 6767 mpo0 7354 onprc 7622 ordeleqon 7626 onuninsuci 7681 orduninsuc 7684 iprc 7754 tfrlem13 8212 tfrlem14 8213 tfrlem16 8215 tfr2b 8218 tz7.44lem1 8227 sdomn2lp 8885 canth2 8899 map2xp 8916 fi0 9157 sucprcreg 9338 rankxplim3 9640 alephnbtwn2 9829 alephprc 9856 unialeph 9858 kmlem16 9922 cfsuc 10014 nd1 10344 nd2 10345 canthp1lem2 10410 0nnq 10681 1ne0sr 10853 pnfnre 11017 mnfnre 11019 ine0 11410 recgt0ii 11881 inelr 11963 0nnn 12009 nnunb 12229 nn0nepnf 12313 indstr 12655 1nuz2 12663 0nrp 12764 lsw0 14266 egt2lt3 15913 ruc 15950 odd2np1 16048 divalglem5 16104 bitsf1 16151 0nprm 16381 structcnvcnv 16852 fvsetsid 16867 fnpr2ob 17267 oduclatb 18223 0g0 18346 psgnunilem3 19102 zringndrg 20688 00ply1bas 21409 0ntop 22052 topnex 22144 bwth 22559 ustn0 23370 vitalilem5 24774 deg1nn0clb 25253 aaliou3lem9 25508 sinhalfpilem 25618 logdmn0 25793 dvlog 25804 ppiltx 26324 dchrisum0fno1 26657 axlowdim1 27325 topnfbey 28829 0ngrp 28869 dmadjrnb 30264 neldifpr1 30877 neldifpr2 30878 1nei 31067 nn0xmulclb 31090 ballotlem2 32451 bnj521 32712 bnj1304 32795 bnj110 32834 bnj98 32843 bnj1523 33047 subfacp1lem5 33142 msrrcl 33501 poxp2 33786 poxp3 33792 nosgnn0i 33858 sltsolem1 33874 nolt02o 33894 nogt01o 33895 noprc 33970 oldirr 34068 leftirr 34069 rightirr 34070 linedegen 34441 rankeq1o 34469 neufal 34591 neutru 34592 unqsym1 34610 amosym1 34611 onpsstopbas 34615 ordcmp 34632 onint1 34634 bj-ru0 35127 bj-ru 35129 bj-1nel0 35140 bj-0nelsngl 35157 bj-0nmoore 35279 bj-ccinftydisj 35380 relowlpssretop 35531 poimirlem16 35789 poimirlem17 35790 poimirlem18 35791 poimirlem19 35792 poimirlem20 35793 poimirlem22 35795 poimirlem30 35803 zrdivrng 36107 prtlem400 36880 equidqe 36932 sn-inelr 40432 eldioph4b 40630 jm2.23 40815 ttac 40855 clsk1indlem1 41625 rusbcALT 42027 fouriersw 43743 aibnbna 44369 dtrucor3 46113 |
Copyright terms: Public domain | W3C validator |