| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliund | Structured version Visualization version GIF version | ||
| Description: Membership in indexed union. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
| Ref | Expression |
|---|---|
| eliund.1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| eliund | ⊢ (𝜑 → 𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliund.1 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) | |
| 2 | eliun 4945 | . 2 ⊢ (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (𝜑 → 𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∃wrex 3057 ∪ ciun 4941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rex 3058 df-v 3439 df-iun 4943 |
| This theorem is referenced by: bdayiun 27861 gsumwrd2dccatlem 33053 imaid 49279 |
| Copyright terms: Public domain | W3C validator |