MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliund Structured version   Visualization version   GIF version

Theorem eliund 4948
Description: Membership in indexed union. (Contributed by Glauco Siliprandi, 15-Feb-2025.)
Hypothesis
Ref Expression
eliund.1 (𝜑 → ∃𝑥𝐵 𝐴𝐶)
Assertion
Ref Expression
eliund (𝜑𝐴 𝑥𝐵 𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem eliund
StepHypRef Expression
1 eliund.1 . 2 (𝜑 → ∃𝑥𝐵 𝐴𝐶)
2 eliun 4945 . 2 (𝐴 𝑥𝐵 𝐶 ↔ ∃𝑥𝐵 𝐴𝐶)
31, 2sylibr 234 1 (𝜑𝐴 𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wrex 3056   ciun 4941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rex 3057  df-v 3438  df-iun 4943
This theorem is referenced by:  bdayiun  27858  gsumwrd2dccatlem  33041  imaid  49185
  Copyright terms: Public domain W3C validator