Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > norcomOLD | Structured version Visualization version GIF version |
Description: Obsolete version of norcom 1527 as of 23-Apr-2024. (Contributed by Remi, 25-Oct-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
norcomOLD | ⊢ ((𝜑 ⊽ 𝜓) ↔ (𝜓 ⊽ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 867 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) | |
2 | 1 | notbii 320 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ ¬ (𝜓 ∨ 𝜑)) |
3 | df-nor 1526 | . 2 ⊢ ((𝜑 ⊽ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) | |
4 | df-nor 1526 | . 2 ⊢ ((𝜓 ⊽ 𝜑) ↔ ¬ (𝜓 ∨ 𝜑)) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ((𝜑 ⊽ 𝜓) ↔ (𝜓 ⊽ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∨ wo 844 ⊽ wnor 1525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 df-nor 1526 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |