|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nornot | Structured version Visualization version GIF version | ||
| Description: ¬ is expressible via ⊽. (Contributed by Remi, 25-Oct-2023.) (Proof shortened by Wolf Lammen, 8-Dec-2023.) | 
| Ref | Expression | 
|---|---|
| nornot | ⊢ (¬ 𝜑 ↔ (𝜑 ⊽ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-nor 1528 | . . 3 ⊢ ((𝜑 ⊽ 𝜑) ↔ ¬ (𝜑 ∨ 𝜑)) | |
| 2 | oridm 904 | . . 3 ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) | |
| 3 | 1, 2 | xchbinx 334 | . 2 ⊢ ((𝜑 ⊽ 𝜑) ↔ ¬ 𝜑) | 
| 4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝜑 ↔ (𝜑 ⊽ 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 ⊽ wnor 1527 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-or 848 df-nor 1528 | 
| This theorem is referenced by: noran 1531 noror 1532 | 
| Copyright terms: Public domain | W3C validator |