Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nornot | Structured version Visualization version GIF version |
Description: ¬ is expressible via ⊽. (Contributed by Remi, 25-Oct-2023.) (Proof shortened by Wolf Lammen, 8-Dec-2023.) |
Ref | Expression |
---|---|
nornot | ⊢ (¬ 𝜑 ↔ (𝜑 ⊽ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nor 1526 | . . 3 ⊢ ((𝜑 ⊽ 𝜑) ↔ ¬ (𝜑 ∨ 𝜑)) | |
2 | oridm 902 | . . 3 ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) | |
3 | 1, 2 | xchbinx 334 | . 2 ⊢ ((𝜑 ⊽ 𝜑) ↔ ¬ 𝜑) |
4 | 3 | bicomi 223 | 1 ⊢ (¬ 𝜑 ↔ (𝜑 ⊽ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∨ wo 844 ⊽ wnor 1525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 df-nor 1526 |
This theorem is referenced by: noran 1530 noror 1531 |
Copyright terms: Public domain | W3C validator |