Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  notbicom Structured version   Visualization version   GIF version

Theorem notbicom 43860
Description: Commutative law for the negation of a biconditional. (Contributed by Glauco Siliprandi, 15-Feb-2025.)
Hypothesis
Ref Expression
notbicom.1 ¬ (𝜑𝜓)
Assertion
Ref Expression
notbicom ¬ (𝜓𝜑)

Proof of Theorem notbicom
StepHypRef Expression
1 notbicom.1 . 2 ¬ (𝜑𝜓)
2 bicom 221 . 2 ((𝜓𝜑) ↔ (𝜑𝜓))
31, 2mtbir 323 1 ¬ (𝜓𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator