Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexeqif Structured version   Visualization version   GIF version

Theorem rexeqif 45132
Description: Equality inference for restricted existential quantifier. (Contributed by Glauco Siliprandi, 15-Feb-2025.)
Hypotheses
Ref Expression
rexeqif.1 𝑥𝐴
rexeqif.2 𝑥𝐵
rexeqif.3 𝐴 = 𝐵
Assertion
Ref Expression
rexeqif (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑)

Proof of Theorem rexeqif
StepHypRef Expression
1 rexeqif.3 . 2 𝐴 = 𝐵
2 rexeqif.1 . . 3 𝑥𝐴
3 rexeqif.2 . . 3 𝑥𝐵
42, 3rexeqf 3333 . 2 (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))
51, 4ax-mp 5 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wnfc 2878  wrex 3055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ral 3047  df-rex 3056
This theorem is referenced by:  rexanuz2nf  45461
  Copyright terms: Public domain W3C validator