![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rexeqif | Structured version Visualization version GIF version |
Description: Equality inference for restricted existential quantifier. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
Ref | Expression |
---|---|
rexeqif.1 | ⊢ Ⅎ𝑥𝐴 |
rexeqif.2 | ⊢ Ⅎ𝑥𝐵 |
rexeqif.3 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
rexeqif | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeqif.3 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | rexeqif.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | rexeqif.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | rexeqf 3357 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 Ⅎwnfc 2888 ∃wrex 3072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ral 3064 df-rex 3073 |
This theorem is referenced by: rexanuz2nf 45343 |
Copyright terms: Public domain | W3C validator |