| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rexeqif | Structured version Visualization version GIF version | ||
| Description: Equality inference for restricted existential quantifier. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
| Ref | Expression |
|---|---|
| rexeqif.1 | ⊢ Ⅎ𝑥𝐴 |
| rexeqif.2 | ⊢ Ⅎ𝑥𝐵 |
| rexeqif.3 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| rexeqif | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeqif.3 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | rexeqif.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | rexeqif.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 2, 3 | rexeqf 3337 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 Ⅎwnfc 2882 ∃wrex 3059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 |
| This theorem is referenced by: rexanuz2nf 45436 |
| Copyright terms: Public domain | W3C validator |