Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexeqif Structured version   Visualization version   GIF version

Theorem rexeqif 44323
Description: Equality inference for restricted existential quantifier. (Contributed by Glauco Siliprandi, 15-Feb-2025.)
Hypotheses
Ref Expression
rexeqif.1 𝑥𝐴
rexeqif.2 𝑥𝐵
rexeqif.3 𝐴 = 𝐵
Assertion
Ref Expression
rexeqif (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑)

Proof of Theorem rexeqif
StepHypRef Expression
1 rexeqif.3 . 2 𝐴 = 𝐵
2 rexeqif.1 . . 3 𝑥𝐴
3 rexeqif.2 . . 3 𝑥𝐵
42, 3rexeqf 3349 . 2 (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))
51, 4ax-mp 5 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1540  wnfc 2882  wrex 3069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070
This theorem is referenced by:  rexanuz2nf  44662
  Copyright terms: Public domain W3C validator