| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rexeqif | Structured version Visualization version GIF version | ||
| Description: Equality inference for restricted existential quantifier. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
| Ref | Expression |
|---|---|
| rexeqif.1 | ⊢ Ⅎ𝑥𝐴 |
| rexeqif.2 | ⊢ Ⅎ𝑥𝐵 |
| rexeqif.3 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| rexeqif | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeqif.3 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | rexeqif.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | rexeqif.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 2, 3 | rexeqf 3333 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Ⅎwnfc 2878 ∃wrex 3055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ral 3047 df-rex 3056 |
| This theorem is referenced by: rexanuz2nf 45461 |
| Copyright terms: Public domain | W3C validator |