Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orbidi | Structured version Visualization version GIF version |
Description: Disjunction distributes over the biconditional. An axiom of system DS in Vladimir Lifschitz, "On calculational proofs" (1998), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.3384. (Contributed by NM, 8-Jan-2005.) (Proof shortened by Wolf Lammen, 4-Feb-2013.) |
Ref | Expression |
---|---|
orbidi | ⊢ ((𝜑 ∨ (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∨ 𝜓) ↔ (𝜑 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74 269 | . 2 ⊢ ((¬ 𝜑 → (𝜓 ↔ 𝜒)) ↔ ((¬ 𝜑 → 𝜓) ↔ (¬ 𝜑 → 𝜒))) | |
2 | df-or 844 | . 2 ⊢ ((𝜑 ∨ (𝜓 ↔ 𝜒)) ↔ (¬ 𝜑 → (𝜓 ↔ 𝜒))) | |
3 | df-or 844 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
4 | df-or 844 | . . 3 ⊢ ((𝜑 ∨ 𝜒) ↔ (¬ 𝜑 → 𝜒)) | |
5 | 3, 4 | bibi12i 339 | . 2 ⊢ (((𝜑 ∨ 𝜓) ↔ (𝜑 ∨ 𝜒)) ↔ ((¬ 𝜑 → 𝜓) ↔ (¬ 𝜑 → 𝜒))) |
6 | 1, 2, 5 | 3bitr4i 302 | 1 ⊢ ((𝜑 ∨ (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∨ 𝜓) ↔ (𝜑 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: pm5.7 950 |
Copyright terms: Public domain | W3C validator |