| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbi1 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.37 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| orbi1 | ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | orbi1d 917 | 1 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 849 |
| This theorem is referenced by: prmdvdsexp 16752 orbi1rVD 44868 sbc3orgVD 44871 |
| Copyright terms: Public domain | W3C validator |