| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑚 = 1 → (𝐴↑𝑚) = (𝐴↑1)) |
| 2 | 1 | breq2d 5155 |
. . . . . 6
⊢ (𝑚 = 1 → (𝑃 ∥ (𝐴↑𝑚) ↔ 𝑃 ∥ (𝐴↑1))) |
| 3 | 2 | bibi1d 343 |
. . . . 5
⊢ (𝑚 = 1 → ((𝑃 ∥ (𝐴↑𝑚) ↔ 𝑃 ∥ 𝐴) ↔ (𝑃 ∥ (𝐴↑1) ↔ 𝑃 ∥ 𝐴))) |
| 4 | 3 | imbi2d 340 |
. . . 4
⊢ (𝑚 = 1 → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑𝑚) ↔ 𝑃 ∥ 𝐴)) ↔ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑1) ↔ 𝑃 ∥ 𝐴)))) |
| 5 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑚 = 𝑘 → (𝐴↑𝑚) = (𝐴↑𝑘)) |
| 6 | 5 | breq2d 5155 |
. . . . . 6
⊢ (𝑚 = 𝑘 → (𝑃 ∥ (𝐴↑𝑚) ↔ 𝑃 ∥ (𝐴↑𝑘))) |
| 7 | 6 | bibi1d 343 |
. . . . 5
⊢ (𝑚 = 𝑘 → ((𝑃 ∥ (𝐴↑𝑚) ↔ 𝑃 ∥ 𝐴) ↔ (𝑃 ∥ (𝐴↑𝑘) ↔ 𝑃 ∥ 𝐴))) |
| 8 | 7 | imbi2d 340 |
. . . 4
⊢ (𝑚 = 𝑘 → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑𝑚) ↔ 𝑃 ∥ 𝐴)) ↔ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑𝑘) ↔ 𝑃 ∥ 𝐴)))) |
| 9 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑚 = (𝑘 + 1) → (𝐴↑𝑚) = (𝐴↑(𝑘 + 1))) |
| 10 | 9 | breq2d 5155 |
. . . . . 6
⊢ (𝑚 = (𝑘 + 1) → (𝑃 ∥ (𝐴↑𝑚) ↔ 𝑃 ∥ (𝐴↑(𝑘 + 1)))) |
| 11 | 10 | bibi1d 343 |
. . . . 5
⊢ (𝑚 = (𝑘 + 1) → ((𝑃 ∥ (𝐴↑𝑚) ↔ 𝑃 ∥ 𝐴) ↔ (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃 ∥ 𝐴))) |
| 12 | 11 | imbi2d 340 |
. . . 4
⊢ (𝑚 = (𝑘 + 1) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑𝑚) ↔ 𝑃 ∥ 𝐴)) ↔ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃 ∥ 𝐴)))) |
| 13 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑚 = 𝑁 → (𝐴↑𝑚) = (𝐴↑𝑁)) |
| 14 | 13 | breq2d 5155 |
. . . . . 6
⊢ (𝑚 = 𝑁 → (𝑃 ∥ (𝐴↑𝑚) ↔ 𝑃 ∥ (𝐴↑𝑁))) |
| 15 | 14 | bibi1d 343 |
. . . . 5
⊢ (𝑚 = 𝑁 → ((𝑃 ∥ (𝐴↑𝑚) ↔ 𝑃 ∥ 𝐴) ↔ (𝑃 ∥ (𝐴↑𝑁) ↔ 𝑃 ∥ 𝐴))) |
| 16 | 15 | imbi2d 340 |
. . . 4
⊢ (𝑚 = 𝑁 → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑𝑚) ↔ 𝑃 ∥ 𝐴)) ↔ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑𝑁) ↔ 𝑃 ∥ 𝐴)))) |
| 17 | | zcn 12618 |
. . . . . . 7
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℂ) |
| 18 | 17 | adantl 481 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈
ℂ) |
| 19 | 18 | exp1d 14181 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴↑1) = 𝐴) |
| 20 | 19 | breq2d 5155 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑1) ↔ 𝑃 ∥ 𝐴)) |
| 21 | | nnnn0 12533 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
| 22 | | expp1 14109 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) |
| 23 | 18, 21, 22 | syl2an 596 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) |
| 24 | 23 | breq2d 5155 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃 ∥ ((𝐴↑𝑘) · 𝐴))) |
| 25 | | simpll 767 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → 𝑃 ∈
ℙ) |
| 26 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈
ℤ) |
| 27 | | zexpcl 14117 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑘) ∈
ℤ) |
| 28 | 26, 21, 27 | syl2an 596 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝐴↑𝑘) ∈ ℤ) |
| 29 | | simplr 769 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈
ℤ) |
| 30 | | euclemma 16750 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝐴↑𝑘) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ ((𝐴↑𝑘) · 𝐴) ↔ (𝑃 ∥ (𝐴↑𝑘) ∨ 𝑃 ∥ 𝐴))) |
| 31 | 25, 28, 29, 30 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝑃 ∥ ((𝐴↑𝑘) · 𝐴) ↔ (𝑃 ∥ (𝐴↑𝑘) ∨ 𝑃 ∥ 𝐴))) |
| 32 | 24, 31 | bitrd 279 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ (𝑃 ∥ (𝐴↑𝑘) ∨ 𝑃 ∥ 𝐴))) |
| 33 | | orbi1 918 |
. . . . . . . . 9
⊢ ((𝑃 ∥ (𝐴↑𝑘) ↔ 𝑃 ∥ 𝐴) → ((𝑃 ∥ (𝐴↑𝑘) ∨ 𝑃 ∥ 𝐴) ↔ (𝑃 ∥ 𝐴 ∨ 𝑃 ∥ 𝐴))) |
| 34 | | oridm 905 |
. . . . . . . . 9
⊢ ((𝑃 ∥ 𝐴 ∨ 𝑃 ∥ 𝐴) ↔ 𝑃 ∥ 𝐴) |
| 35 | 33, 34 | bitrdi 287 |
. . . . . . . 8
⊢ ((𝑃 ∥ (𝐴↑𝑘) ↔ 𝑃 ∥ 𝐴) → ((𝑃 ∥ (𝐴↑𝑘) ∨ 𝑃 ∥ 𝐴) ↔ 𝑃 ∥ 𝐴)) |
| 36 | 35 | bibi2d 342 |
. . . . . . 7
⊢ ((𝑃 ∥ (𝐴↑𝑘) ↔ 𝑃 ∥ 𝐴) → ((𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ (𝑃 ∥ (𝐴↑𝑘) ∨ 𝑃 ∥ 𝐴)) ↔ (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃 ∥ 𝐴))) |
| 37 | 32, 36 | syl5ibcom 245 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → ((𝑃 ∥ (𝐴↑𝑘) ↔ 𝑃 ∥ 𝐴) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃 ∥ 𝐴))) |
| 38 | 37 | expcom 413 |
. . . . 5
⊢ (𝑘 ∈ ℕ → ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝑃 ∥ (𝐴↑𝑘) ↔ 𝑃 ∥ 𝐴) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃 ∥ 𝐴)))) |
| 39 | 38 | a2d 29 |
. . . 4
⊢ (𝑘 ∈ ℕ → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑𝑘) ↔ 𝑃 ∥ 𝐴)) → ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃 ∥ 𝐴)))) |
| 40 | 4, 8, 12, 16, 20, 39 | nnind 12284 |
. . 3
⊢ (𝑁 ∈ ℕ → ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑𝑁) ↔ 𝑃 ∥ 𝐴))) |
| 41 | 40 | impcom 407 |
. 2
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝐴↑𝑁) ↔ 𝑃 ∥ 𝐴)) |
| 42 | 41 | 3impa 1110 |
1
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝐴↑𝑁) ↔ 𝑃 ∥ 𝐴)) |