Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbc3orgVD Structured version   Visualization version   GIF version

Theorem sbc3orgVD 43602
Description: Virtual deduction proof of the analogue of sbcor 3830 with three disjuncts. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:1,?: e1a 43378 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]((𝜑 𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) [𝐴 / 𝑥]𝜒))   )
3:: (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 𝜓𝜒))
32:3: 𝑥(((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒))
33:1,32,?: e10 43445 (   𝐴𝐵   ▶   [𝐴 / 𝑥](((𝜑 𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒))   )
4:1,33,?: e11 43439 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]((𝜑 𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑𝜓𝜒))   )
5:2,4,?: e11 43439 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 𝜓𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒))   )
6:1,?: e1a 43378 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))   )
7:6,?: e1a 43378 (   𝐴𝐵   ▶   (([𝐴 / 𝑥](𝜑 𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) [𝐴 / 𝑥]𝜒))   )
8:5,7,?: e11 43439 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 𝜓𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) [𝐴 / 𝑥]𝜒))   )
9:?: ((([𝐴 / 𝑥]𝜑 [𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ ([𝐴 / 𝑥]𝜑 [𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
10:8,9,?: e10 43445 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓 [𝐴 / 𝑥]𝜒))   )
qed:10: (𝐴𝐵 → ([𝐴 / 𝑥](𝜑 𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓 [𝐴 / 𝑥]𝜒)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbc3orgVD (𝐴𝐵 → ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))

Proof of Theorem sbc3orgVD
StepHypRef Expression
1 idn1 43325 . . . . . 6 (   𝐴𝐵   ▶   𝐴𝐵   )
2 sbcor 3830 . . . . . . 7 ([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒))
32a1i 11 . . . . . 6 (𝐴𝐵 → ([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒)))
41, 3e1a 43378 . . . . 5 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒))   )
5 df-3or 1088 . . . . . . . . 9 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))
65bicomi 223 . . . . . . . 8 (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒))
76ax-gen 1797 . . . . . . 7 𝑥(((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒))
8 spsbc 3790 . . . . . . 7 (𝐴𝐵 → (∀𝑥(((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒)) → [𝐴 / 𝑥](((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒))))
91, 7, 8e10 43445 . . . . . 6 (   𝐴𝐵   ▶   [𝐴 / 𝑥](((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒))   )
10 sbcbig 3831 . . . . . . 7 (𝐴𝐵 → ([𝐴 / 𝑥](((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒)) ↔ ([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑𝜓𝜒))))
1110biimpd 228 . . . . . 6 (𝐴𝐵 → ([𝐴 / 𝑥](((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒)) → ([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑𝜓𝜒))))
121, 9, 11e11 43439 . . . . 5 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑𝜓𝜒))   )
13 bitr3 352 . . . . . 6 (([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑𝜓𝜒)) → (([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒))))
1413com12 32 . . . . 5 (([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑𝜓𝜒)) → ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒))))
154, 12, 14e11 43439 . . . 4 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒))   )
16 sbcor 3830 . . . . . . 7 ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
1716a1i 11 . . . . . 6 (𝐴𝐵 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
181, 17e1a 43378 . . . . 5 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))   )
19 orbi1 916 . . . . 5 (([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)) → (([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)))
2018, 19e1a 43378 . . . 4 (   𝐴𝐵   ▶   (([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒))   )
21 bibi1 351 . . . . 5 (([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)) ↔ (([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒))))
2221biimprd 247 . . . 4 (([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒)) → ((([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒))))
2315, 20, 22e11 43439 . . 3 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒))   )
24 df-3or 1088 . . . 4 (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒))
2524bicomi 223 . . 3 ((([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
26 bibi1 351 . . . 4 (([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) ↔ ((([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))
2726biimprd 247 . . 3 (([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)) → (((([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))
2823, 25, 27e10 43445 . 2 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))   )
2928in1 43322 1 (𝐴𝐵 → ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 845  w3o 1086  wal 1539  wcel 2106  [wsbc 3777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-sbc 3778  df-vd1 43321
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator