Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbc3orgVD Structured version   Visualization version   GIF version

Theorem sbc3orgVD 44882
Description: Virtual deduction proof of the analogue of sbcor 3792 with three disjuncts. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:1,?: e1a 44659 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]((𝜑 𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) [𝐴 / 𝑥]𝜒))   )
3:: (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 𝜓𝜒))
32:3: 𝑥(((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒))
33:1,32,?: e10 44726 (   𝐴𝐵   ▶   [𝐴 / 𝑥](((𝜑 𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒))   )
4:1,33,?: e11 44720 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]((𝜑 𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑𝜓𝜒))   )
5:2,4,?: e11 44720 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 𝜓𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒))   )
6:1,?: e1a 44659 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))   )
7:6,?: e1a 44659 (   𝐴𝐵   ▶   (([𝐴 / 𝑥](𝜑 𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) [𝐴 / 𝑥]𝜒))   )
8:5,7,?: e11 44720 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 𝜓𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) [𝐴 / 𝑥]𝜒))   )
9:?: ((([𝐴 / 𝑥]𝜑 [𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ ([𝐴 / 𝑥]𝜑 [𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
10:8,9,?: e10 44726 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓 [𝐴 / 𝑥]𝜒))   )
qed:10: (𝐴𝐵 → ([𝐴 / 𝑥](𝜑 𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓 [𝐴 / 𝑥]𝜒)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbc3orgVD (𝐴𝐵 → ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))

Proof of Theorem sbc3orgVD
StepHypRef Expression
1 idn1 44606 . . . . . 6 (   𝐴𝐵   ▶   𝐴𝐵   )
2 sbcor 3792 . . . . . . 7 ([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒))
32a1i 11 . . . . . 6 (𝐴𝐵 → ([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒)))
41, 3e1a 44659 . . . . 5 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒))   )
5 df-3or 1087 . . . . . . . . 9 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))
65bicomi 224 . . . . . . . 8 (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒))
76ax-gen 1796 . . . . . . 7 𝑥(((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒))
8 spsbc 3754 . . . . . . 7 (𝐴𝐵 → (∀𝑥(((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒)) → [𝐴 / 𝑥](((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒))))
91, 7, 8e10 44726 . . . . . 6 (   𝐴𝐵   ▶   [𝐴 / 𝑥](((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒))   )
10 sbcbig 3793 . . . . . . 7 (𝐴𝐵 → ([𝐴 / 𝑥](((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒)) ↔ ([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑𝜓𝜒))))
1110biimpd 229 . . . . . 6 (𝐴𝐵 → ([𝐴 / 𝑥](((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒)) → ([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑𝜓𝜒))))
121, 9, 11e11 44720 . . . . 5 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑𝜓𝜒))   )
13 bitr3 352 . . . . . 6 (([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑𝜓𝜒)) → (([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒))))
1413com12 32 . . . . 5 (([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑𝜓𝜒)) → ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒))))
154, 12, 14e11 44720 . . . 4 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒))   )
16 sbcor 3792 . . . . . . 7 ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
1716a1i 11 . . . . . 6 (𝐴𝐵 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
181, 17e1a 44659 . . . . 5 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))   )
19 orbi1 917 . . . . 5 (([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)) → (([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)))
2018, 19e1a 44659 . . . 4 (   𝐴𝐵   ▶   (([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒))   )
21 bibi1 351 . . . . 5 (([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)) ↔ (([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒))))
2221biimprd 248 . . . 4 (([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒)) → ((([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒))))
2315, 20, 22e11 44720 . . 3 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒))   )
24 df-3or 1087 . . . 4 (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒))
2524bicomi 224 . . 3 ((([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
26 bibi1 351 . . . 4 (([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) ↔ ((([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))
2726biimprd 248 . . 3 (([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)) → (((([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))
2823, 25, 27e10 44726 . 2 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))   )
2928in1 44603 1 (𝐴𝐵 → ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847  w3o 1085  wal 1539  wcel 2111  [wsbc 3741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-sbc 3742  df-vd1 44602
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator