Proof of Theorem sbc3orgVD
| Step | Hyp | Ref
| Expression |
| 1 | | idn1 44599 |
. . . . . 6
⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) |
| 2 | | sbcor 3816 |
. . . . . . 7
⊢
([𝐴 / 𝑥]((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ∨ [𝐴 / 𝑥]𝜒)) |
| 3 | 2 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ∨ [𝐴 / 𝑥]𝜒))) |
| 4 | 1, 3 | e1a 44652 |
. . . . 5
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ∨ [𝐴 / 𝑥]𝜒)) ) |
| 5 | | df-3or 1087 |
. . . . . . . . 9
⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
| 6 | 5 | bicomi 224 |
. . . . . . . 8
⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ 𝜓 ∨ 𝜒)) |
| 7 | 6 | ax-gen 1795 |
. . . . . . 7
⊢
∀𝑥(((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ 𝜓 ∨ 𝜒)) |
| 8 | | spsbc 3778 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐵 → (∀𝑥(((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ 𝜓 ∨ 𝜒)) → [𝐴 / 𝑥](((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ 𝜓 ∨ 𝜒)))) |
| 9 | 1, 7, 8 | e10 44719 |
. . . . . 6
⊢ ( 𝐴 ∈ 𝐵 ▶ [𝐴 / 𝑥](((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ 𝜓 ∨ 𝜒)) ) |
| 10 | | sbcbig 3817 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ 𝜓 ∨ 𝜒)) ↔ ([𝐴 / 𝑥]((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒)))) |
| 11 | 10 | biimpd 229 |
. . . . . 6
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ 𝜓 ∨ 𝜒)) → ([𝐴 / 𝑥]((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒)))) |
| 12 | 1, 9, 11 | e11 44713 |
. . . . 5
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒)) ) |
| 13 | | bitr3 352 |
. . . . . 6
⊢
(([𝐴 / 𝑥]((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒)) → (([𝐴 / 𝑥]((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ∨ [𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ∨ [𝐴 / 𝑥]𝜒)))) |
| 14 | 13 | com12 32 |
. . . . 5
⊢
(([𝐴 / 𝑥]((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ∨ [𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥]((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒)) → ([𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ∨ [𝐴 / 𝑥]𝜒)))) |
| 15 | 4, 12, 14 | e11 44713 |
. . . 4
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ∨ [𝐴 / 𝑥]𝜒)) ) |
| 16 | | sbcor 3816 |
. . . . . . 7
⊢
([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓)) |
| 17 | 16 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓))) |
| 18 | 1, 17 | e1a 44652 |
. . . . 5
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓)) ) |
| 19 | | orbi1 917 |
. . . . 5
⊢
(([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓)) → (([𝐴 / 𝑥](𝜑 ∨ 𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒))) |
| 20 | 18, 19 | e1a 44652 |
. . . 4
⊢ ( 𝐴 ∈ 𝐵 ▶ (([𝐴 / 𝑥](𝜑 ∨ 𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)) ) |
| 21 | | bibi1 351 |
. . . . 5
⊢
(([𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ∨ [𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)) ↔ (([𝐴 / 𝑥](𝜑 ∨ 𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)))) |
| 22 | 21 | biimprd 248 |
. . . 4
⊢
(([𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ∨ [𝐴 / 𝑥]𝜒)) → ((([𝐴 / 𝑥](𝜑 ∨ 𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)))) |
| 23 | 15, 20, 22 | e11 44713 |
. . 3
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)) ) |
| 24 | | df-3or 1087 |
. . . 4
⊢
(([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓 ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)) |
| 25 | 24 | bicomi 224 |
. . 3
⊢
((([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓 ∨ [𝐴 / 𝑥]𝜒)) |
| 26 | | bibi1 351 |
. . . 4
⊢
(([𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓 ∨ [𝐴 / 𝑥]𝜒)) ↔ ((([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓 ∨ [𝐴 / 𝑥]𝜒)))) |
| 27 | 26 | biimprd 248 |
. . 3
⊢
(([𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)) → (((([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓 ∨ [𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓 ∨ [𝐴 / 𝑥]𝜒)))) |
| 28 | 23, 25, 27 | e10 44719 |
. 2
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓 ∨ [𝐴 / 𝑥]𝜒)) ) |
| 29 | 28 | in1 44596 |
1
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓 ∨ [𝐴 / 𝑥]𝜒))) |