Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbc3orgVD Structured version   Visualization version   GIF version

Theorem sbc3orgVD 42360
Description: Virtual deduction proof of the analogue of sbcor 3764 with three disjuncts. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:1,?: e1a 42136 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]((𝜑 𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) [𝐴 / 𝑥]𝜒))   )
3:: (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 𝜓𝜒))
32:3: 𝑥(((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒))
33:1,32,?: e10 42203 (   𝐴𝐵   ▶   [𝐴 / 𝑥](((𝜑 𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒))   )
4:1,33,?: e11 42197 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]((𝜑 𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑𝜓𝜒))   )
5:2,4,?: e11 42197 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 𝜓𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒))   )
6:1,?: e1a 42136 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))   )
7:6,?: e1a 42136 (   𝐴𝐵   ▶   (([𝐴 / 𝑥](𝜑 𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) [𝐴 / 𝑥]𝜒))   )
8:5,7,?: e11 42197 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 𝜓𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) [𝐴 / 𝑥]𝜒))   )
9:?: ((([𝐴 / 𝑥]𝜑 [𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ ([𝐴 / 𝑥]𝜑 [𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
10:8,9,?: e10 42203 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓 [𝐴 / 𝑥]𝜒))   )
qed:10: (𝐴𝐵 → ([𝐴 / 𝑥](𝜑 𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓 [𝐴 / 𝑥]𝜒)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbc3orgVD (𝐴𝐵 → ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))

Proof of Theorem sbc3orgVD
StepHypRef Expression
1 idn1 42083 . . . . . 6 (   𝐴𝐵   ▶   𝐴𝐵   )
2 sbcor 3764 . . . . . . 7 ([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒))
32a1i 11 . . . . . 6 (𝐴𝐵 → ([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒)))
41, 3e1a 42136 . . . . 5 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒))   )
5 df-3or 1086 . . . . . . . . 9 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))
65bicomi 223 . . . . . . . 8 (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒))
76ax-gen 1799 . . . . . . 7 𝑥(((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒))
8 spsbc 3724 . . . . . . 7 (𝐴𝐵 → (∀𝑥(((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒)) → [𝐴 / 𝑥](((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒))))
91, 7, 8e10 42203 . . . . . 6 (   𝐴𝐵   ▶   [𝐴 / 𝑥](((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒))   )
10 sbcbig 3765 . . . . . . 7 (𝐴𝐵 → ([𝐴 / 𝑥](((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒)) ↔ ([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑𝜓𝜒))))
1110biimpd 228 . . . . . 6 (𝐴𝐵 → ([𝐴 / 𝑥](((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒)) → ([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑𝜓𝜒))))
121, 9, 11e11 42197 . . . . 5 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑𝜓𝜒))   )
13 bitr3 352 . . . . . 6 (([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑𝜓𝜒)) → (([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒))))
1413com12 32 . . . . 5 (([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑𝜓𝜒)) → ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒))))
154, 12, 14e11 42197 . . . 4 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒))   )
16 sbcor 3764 . . . . . . 7 ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
1716a1i 11 . . . . . 6 (𝐴𝐵 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
181, 17e1a 42136 . . . . 5 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))   )
19 orbi1 914 . . . . 5 (([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)) → (([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)))
2018, 19e1a 42136 . . . 4 (   𝐴𝐵   ▶   (([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒))   )
21 bibi1 351 . . . . 5 (([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)) ↔ (([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒))))
2221biimprd 247 . . . 4 (([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒)) → ((([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒))))
2315, 20, 22e11 42197 . . 3 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒))   )
24 df-3or 1086 . . . 4 (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒))
2524bicomi 223 . . 3 ((([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
26 bibi1 351 . . . 4 (([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) ↔ ((([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))
2726biimprd 247 . . 3 (([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)) → (((([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))
2823, 25, 27e10 42203 . 2 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))   )
2928in1 42080 1 (𝐴𝐵 → ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 843  w3o 1084  wal 1537  wcel 2108  [wsbc 3711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-sbc 3712  df-vd1 42079
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator