![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orbi1d | Structured version Visualization version GIF version |
Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
orbi1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | orbi2d 915 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
3 | orcom 870 | . 2 ⊢ ((𝜓 ∨ 𝜃) ↔ (𝜃 ∨ 𝜓)) | |
4 | orcom 870 | . 2 ⊢ ((𝜒 ∨ 𝜃) ↔ (𝜃 ∨ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 848 |
This theorem is referenced by: orbi1 917 orbi12d 918 eueq2 3718 uneq1 4170 r19.45zv 4508 rexprgf 4699 rextpg 4703 swopolem 5606 ordsseleq 6414 ordtri3 6421 frxp2 8167 xpord2pred 8168 xpord2indlem 8170 frxp3 8174 xpord3pred 8175 infltoreq 9539 cantnflem1 9726 axgroth2 10862 axgroth3 10868 lelttric 11365 ltxr 13154 xmulneg1 13307 fzpr 13615 elfzp12 13639 caubnd 15393 lcmval 16625 lcmass 16647 isprm6 16747 vdwlem10 17023 irredmul 20445 lringuplu 20560 domneq0 20724 znfld 21596 opsrval 22081 logreclem 26819 perfectlem2 27288 legov3 28620 lnhl 28637 colperpex 28755 lmif 28807 islmib 28809 friendshipgt3 30426 h1datom 31610 xrlelttric 32762 tlt3 32944 prmidl 33447 ismxidl 33469 rprmdvds 33526 esumpcvgval 34058 sibfof 34321 satfvsuc 35345 satfv1 35347 satfvsucsuc 35349 satf0suc 35360 sat1el2xp 35363 fmlasuc0 35368 fmlafvel 35369 satfv1fvfmla1 35407 segcon2 36086 wl-ifpimpr 37448 poimirlem25 37631 cnambfre 37654 pridl 38023 ismaxidl 38026 ispridlc 38056 pridlc 38057 dmnnzd 38061 disjecxrncnvep 38371 4atlem3a 39579 pmapjoin 39834 lcfl3 41476 lcfl4N 41477 sticksstones22 42149 ordsssucb 43324 sbcoreleleqVD 44856 fourierdlem80 46141 euoreqb 47058 el1fzopredsuc 47274 perfectALTVlem2 47646 nnsum3primesle9 47718 clnbupgrel 47758 dfvopnbgr2 47776 lindslinindsimp2 48308 |
Copyright terms: Public domain | W3C validator |