Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orbi1d | Structured version Visualization version GIF version |
Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
orbi1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | orbi2d 913 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
3 | orcom 867 | . 2 ⊢ ((𝜓 ∨ 𝜃) ↔ (𝜃 ∨ 𝜓)) | |
4 | orcom 867 | . 2 ⊢ ((𝜒 ∨ 𝜃) ↔ (𝜃 ∨ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 317 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-or 845 |
This theorem is referenced by: orbi1 915 orbi12d 916 eueq2 3624 uneq1 4061 r19.45zv 4396 rexprgf 4588 rextpg 4592 swopolem 5452 ordsseleq 6198 ordtri3 6205 infltoreq 8999 cantnflem1 9185 axgroth2 10285 axgroth3 10291 lelttric 10785 ltxr 12551 xmulneg1 12703 fzpr 13011 elfzp12 13035 caubnd 14766 lcmval 15988 lcmass 16010 isprm6 16110 vdwlem10 16381 irredmul 19530 domneq0 20138 znfld 20328 opsrval 20806 logreclem 25447 perfectlem2 25913 legov3 26491 lnhl 26508 colperpex 26626 lmif 26678 islmib 26680 friendshipgt3 28282 h1datom 29464 xrlelttric 30599 tlt3 30774 prmidl 31136 ismxidl 31155 esumpcvgval 31565 sibfof 31826 satfvsuc 32839 satfv1 32841 satfvsucsuc 32843 satf0suc 32854 sat1el2xp 32857 fmlasuc0 32862 fmlafvel 32863 satfv1fvfmla1 32901 frxp2 33346 xpord2pred 33347 xpord2ind 33349 frxp3 33352 xpord3pred 33353 segcon2 33956 wl-ifpimpr 35163 poimirlem25 35362 cnambfre 35385 pridl 35755 ismaxidl 35758 ispridlc 35788 pridlc 35789 dmnnzd 35793 4atlem3a 37173 pmapjoin 37428 lcfl3 39070 lcfl4N 39071 sbcoreleleqVD 41938 fourierdlem80 43194 euoreqb 44033 el1fzopredsuc 44250 perfectALTVlem2 44607 nnsum3primesle9 44679 lindslinindsimp2 45237 |
Copyright terms: Public domain | W3C validator |