| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbi1d | Structured version Visualization version GIF version | ||
| Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| orbi1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | orbi2d 915 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| 3 | orcom 870 | . 2 ⊢ ((𝜓 ∨ 𝜃) ↔ (𝜃 ∨ 𝜓)) | |
| 4 | orcom 870 | . 2 ⊢ ((𝜒 ∨ 𝜃) ↔ (𝜃 ∨ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi1 917 orbi12d 918 eueq2 3665 uneq1 4110 r19.45zv 4458 rexprgf 4649 rextpg 4653 swopolem 5539 ordsseleq 6343 ordtri3 6350 frxp2 8083 xpord2pred 8084 xpord2indlem 8086 frxp3 8090 xpord3pred 8091 infltoreq 9399 cantnflem1 9590 axgroth2 10727 axgroth3 10733 lelttric 11231 ltxr 13020 xmulneg1 13175 fzpr 13486 elfzp12 13510 caubnd 15273 lcmval 16510 lcmass 16532 isprm6 16632 vdwlem10 16909 irredmul 20356 lringuplu 20468 domneq0 20632 znfld 21506 opsrval 21992 logreclem 26719 perfectlem2 27188 nnm1n0s 28320 legov3 28596 lnhl 28613 colperpex 28731 lmif 28783 islmib 28785 friendshipgt3 30399 h1datom 31583 xrlelttric 32760 tlt3 32980 domnprodeq0 33286 prmidl 33449 ismxidl 33471 rprmdvds 33528 esumpcvgval 34163 sibfof 34425 satfvsuc 35477 satfv1 35479 satfvsucsuc 35481 satf0suc 35492 sat1el2xp 35495 fmlasuc0 35500 fmlafvel 35501 satfv1fvfmla1 35539 segcon2 36221 wl-ifpimpr 37583 poimirlem25 37758 cnambfre 37781 pridl 38150 ismaxidl 38153 ispridlc 38183 pridlc 38184 dmnnzd 38188 disjecxrncnvep 38510 4atlem3a 39769 pmapjoin 40024 lcfl3 41666 lcfl4N 41667 sticksstones22 42334 ordsssucb 43492 sbcoreleleqVD 45015 fourierdlem80 46346 euoreqb 47271 el1fzopredsuc 47487 perfectALTVlem2 47884 nnsum3primesle9 47956 clnbupgrel 47996 dfvopnbgr2 48015 lindslinindsimp2 48625 |
| Copyright terms: Public domain | W3C validator |