| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbi1d | Structured version Visualization version GIF version | ||
| Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| orbi1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | orbi2d 915 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| 3 | orcom 870 | . 2 ⊢ ((𝜓 ∨ 𝜃) ↔ (𝜃 ∨ 𝜓)) | |
| 4 | orcom 870 | . 2 ⊢ ((𝜒 ∨ 𝜃) ↔ (𝜃 ∨ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi1 917 orbi12d 918 eueq2 3664 uneq1 4106 r19.45zv 4448 rexprgf 4643 rextpg 4647 swopolem 5529 ordsseleq 6330 ordtri3 6337 frxp2 8069 xpord2pred 8070 xpord2indlem 8072 frxp3 8076 xpord3pred 8077 infltoreq 9383 cantnflem1 9574 axgroth2 10711 axgroth3 10717 lelttric 11215 ltxr 13009 xmulneg1 13163 fzpr 13474 elfzp12 13498 caubnd 15261 lcmval 16498 lcmass 16520 isprm6 16620 vdwlem10 16897 irredmul 20342 lringuplu 20454 domneq0 20618 znfld 21492 opsrval 21976 logreclem 26694 perfectlem2 27163 nnm1n0s 28295 legov3 28571 lnhl 28588 colperpex 28706 lmif 28758 islmib 28760 friendshipgt3 30370 h1datom 31554 xrlelttric 32727 tlt3 32943 prmidl 33397 ismxidl 33419 rprmdvds 33476 esumpcvgval 34083 sibfof 34345 satfvsuc 35397 satfv1 35399 satfvsucsuc 35401 satf0suc 35412 sat1el2xp 35415 fmlasuc0 35420 fmlafvel 35421 satfv1fvfmla1 35459 segcon2 36139 wl-ifpimpr 37500 poimirlem25 37685 cnambfre 37708 pridl 38077 ismaxidl 38080 ispridlc 38110 pridlc 38111 dmnnzd 38115 disjecxrncnvep 38422 4atlem3a 39636 pmapjoin 39891 lcfl3 41533 lcfl4N 41534 sticksstones22 42201 ordsssucb 43368 sbcoreleleqVD 44891 fourierdlem80 46224 euoreqb 47140 el1fzopredsuc 47356 perfectALTVlem2 47753 nnsum3primesle9 47825 clnbupgrel 47865 dfvopnbgr2 47884 lindslinindsimp2 48495 |
| Copyright terms: Public domain | W3C validator |