![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orbi1d | Structured version Visualization version GIF version |
Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
orbi1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | orbi2d 914 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
3 | orcom 869 | . 2 ⊢ ((𝜓 ∨ 𝜃) ↔ (𝜃 ∨ 𝜓)) | |
4 | orcom 869 | . 2 ⊢ ((𝜒 ∨ 𝜃) ↔ (𝜃 ∨ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 |
This theorem is referenced by: orbi1 916 orbi12d 917 eueq2 3732 uneq1 4184 r19.45zv 4526 rexprgf 4718 rextpg 4724 swopolem 5618 ordsseleq 6424 ordtri3 6431 frxp2 8185 xpord2pred 8186 xpord2indlem 8188 frxp3 8192 xpord3pred 8193 infltoreq 9571 cantnflem1 9758 axgroth2 10894 axgroth3 10900 lelttric 11397 ltxr 13178 xmulneg1 13331 fzpr 13639 elfzp12 13663 caubnd 15407 lcmval 16639 lcmass 16661 isprm6 16761 vdwlem10 17037 irredmul 20455 lringuplu 20570 domneq0 20730 znfld 21602 opsrval 22087 logreclem 26823 perfectlem2 27292 legov3 28624 lnhl 28641 colperpex 28759 lmif 28811 islmib 28813 friendshipgt3 30430 h1datom 31614 xrlelttric 32759 tlt3 32943 prmidl 33433 ismxidl 33455 rprmdvds 33512 esumpcvgval 34042 sibfof 34305 satfvsuc 35329 satfv1 35331 satfvsucsuc 35333 satf0suc 35344 sat1el2xp 35347 fmlasuc0 35352 fmlafvel 35353 satfv1fvfmla1 35391 segcon2 36069 wl-ifpimpr 37432 poimirlem25 37605 cnambfre 37628 pridl 37997 ismaxidl 38000 ispridlc 38030 pridlc 38031 dmnnzd 38035 disjecxrncnvep 38346 4atlem3a 39554 pmapjoin 39809 lcfl3 41451 lcfl4N 41452 sticksstones22 42125 ordsssucb 43297 sbcoreleleqVD 44830 fourierdlem80 46107 euoreqb 47024 el1fzopredsuc 47240 perfectALTVlem2 47596 nnsum3primesle9 47668 clnbupgrel 47707 dfvopnbgr2 47725 lindslinindsimp2 48192 |
Copyright terms: Public domain | W3C validator |