|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > orbi1d | Structured version Visualization version GIF version | ||
| Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) | 
| Ref | Expression | 
|---|---|
| bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| orbi1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | orbi2d 915 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) | 
| 3 | orcom 870 | . 2 ⊢ ((𝜓 ∨ 𝜃) ↔ (𝜃 ∨ 𝜓)) | |
| 4 | orcom 870 | . 2 ⊢ ((𝜒 ∨ 𝜃) ↔ (𝜃 ∨ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-or 848 | 
| This theorem is referenced by: orbi1 917 orbi12d 918 eueq2 3715 uneq1 4160 r19.45zv 4502 rexprgf 4694 rextpg 4698 swopolem 5601 ordsseleq 6412 ordtri3 6419 frxp2 8170 xpord2pred 8171 xpord2indlem 8173 frxp3 8177 xpord3pred 8178 infltoreq 9543 cantnflem1 9730 axgroth2 10866 axgroth3 10872 lelttric 11369 ltxr 13158 xmulneg1 13312 fzpr 13620 elfzp12 13644 caubnd 15398 lcmval 16630 lcmass 16652 isprm6 16752 vdwlem10 17029 irredmul 20430 lringuplu 20545 domneq0 20709 znfld 21580 opsrval 22065 logreclem 26806 perfectlem2 27275 legov3 28607 lnhl 28624 colperpex 28742 lmif 28794 islmib 28796 friendshipgt3 30418 h1datom 31602 xrlelttric 32757 tlt3 32961 prmidl 33469 ismxidl 33491 rprmdvds 33548 esumpcvgval 34080 sibfof 34343 satfvsuc 35367 satfv1 35369 satfvsucsuc 35371 satf0suc 35382 sat1el2xp 35385 fmlasuc0 35390 fmlafvel 35391 satfv1fvfmla1 35429 segcon2 36107 wl-ifpimpr 37468 poimirlem25 37653 cnambfre 37676 pridl 38045 ismaxidl 38048 ispridlc 38078 pridlc 38079 dmnnzd 38083 disjecxrncnvep 38392 4atlem3a 39600 pmapjoin 39855 lcfl3 41497 lcfl4N 41498 sticksstones22 42170 ordsssucb 43353 sbcoreleleqVD 44884 fourierdlem80 46206 euoreqb 47126 el1fzopredsuc 47342 perfectALTVlem2 47714 nnsum3primesle9 47786 clnbupgrel 47826 dfvopnbgr2 47844 lindslinindsimp2 48385 | 
| Copyright terms: Public domain | W3C validator |