| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbi1d | Structured version Visualization version GIF version | ||
| Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| orbi1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | orbi2d 915 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| 3 | orcom 870 | . 2 ⊢ ((𝜓 ∨ 𝜃) ↔ (𝜃 ∨ 𝜓)) | |
| 4 | orcom 870 | . 2 ⊢ ((𝜒 ∨ 𝜃) ↔ (𝜃 ∨ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi1 917 orbi12d 918 eueq2 3681 uneq1 4124 r19.45zv 4466 rexprgf 4659 rextpg 4663 swopolem 5556 ordsseleq 6361 ordtri3 6368 frxp2 8123 xpord2pred 8124 xpord2indlem 8126 frxp3 8130 xpord3pred 8131 infltoreq 9455 cantnflem1 9642 axgroth2 10778 axgroth3 10784 lelttric 11281 ltxr 13075 xmulneg1 13229 fzpr 13540 elfzp12 13564 caubnd 15325 lcmval 16562 lcmass 16584 isprm6 16684 vdwlem10 16961 irredmul 20338 lringuplu 20453 domneq0 20617 znfld 21470 opsrval 21953 logreclem 26672 perfectlem2 27141 nnm1n0s 28264 legov3 28525 lnhl 28542 colperpex 28660 lmif 28712 islmib 28714 friendshipgt3 30327 h1datom 31511 xrlelttric 32675 tlt3 32896 prmidl 33411 ismxidl 33433 rprmdvds 33490 esumpcvgval 34068 sibfof 34331 satfvsuc 35348 satfv1 35350 satfvsucsuc 35352 satf0suc 35363 sat1el2xp 35366 fmlasuc0 35371 fmlafvel 35372 satfv1fvfmla1 35410 segcon2 36093 wl-ifpimpr 37454 poimirlem25 37639 cnambfre 37662 pridl 38031 ismaxidl 38034 ispridlc 38064 pridlc 38065 dmnnzd 38069 disjecxrncnvep 38376 4atlem3a 39591 pmapjoin 39846 lcfl3 41488 lcfl4N 41489 sticksstones22 42156 ordsssucb 43324 sbcoreleleqVD 44848 fourierdlem80 46184 euoreqb 47107 el1fzopredsuc 47323 perfectALTVlem2 47720 nnsum3primesle9 47792 clnbupgrel 47832 dfvopnbgr2 47850 lindslinindsimp2 48449 |
| Copyright terms: Public domain | W3C validator |