Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orbi1d | Structured version Visualization version GIF version |
Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
orbi1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | orbi2d 912 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
3 | orcom 866 | . 2 ⊢ ((𝜓 ∨ 𝜃) ↔ (𝜃 ∨ 𝜓)) | |
4 | orcom 866 | . 2 ⊢ ((𝜒 ∨ 𝜃) ↔ (𝜃 ∨ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 313 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: orbi1 914 orbi12d 915 eueq2 3640 uneq1 4086 r19.45zv 4430 rexprgf 4626 rextpg 4632 swopolem 5504 ordsseleq 6280 ordtri3 6287 infltoreq 9191 cantnflem1 9377 axgroth2 10512 axgroth3 10518 lelttric 11012 ltxr 12780 xmulneg1 12932 fzpr 13240 elfzp12 13264 caubnd 14998 lcmval 16225 lcmass 16247 isprm6 16347 vdwlem10 16619 irredmul 19866 domneq0 20481 znfld 20680 opsrval 21157 logreclem 25817 perfectlem2 26283 legov3 26863 lnhl 26880 colperpex 26998 lmif 27050 islmib 27052 friendshipgt3 28663 h1datom 29845 xrlelttric 30977 tlt3 31150 prmidl 31517 ismxidl 31536 esumpcvgval 31946 sibfof 32207 satfvsuc 33223 satfv1 33225 satfvsucsuc 33227 satf0suc 33238 sat1el2xp 33241 fmlasuc0 33246 fmlafvel 33247 satfv1fvfmla1 33285 frxp2 33718 xpord2pred 33719 xpord2ind 33721 frxp3 33724 xpord3pred 33725 segcon2 34334 wl-ifpimpr 35564 poimirlem25 35729 cnambfre 35752 pridl 36122 ismaxidl 36125 ispridlc 36155 pridlc 36156 dmnnzd 36160 4atlem3a 37538 pmapjoin 37793 lcfl3 39435 lcfl4N 39436 sticksstones22 40052 sbcoreleleqVD 42368 fourierdlem80 43617 euoreqb 44488 el1fzopredsuc 44705 perfectALTVlem2 45062 nnsum3primesle9 45134 lindslinindsimp2 45692 |
Copyright terms: Public domain | W3C validator |