| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbi1d | Structured version Visualization version GIF version | ||
| Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| orbi1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | orbi2d 915 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| 3 | orcom 870 | . 2 ⊢ ((𝜓 ∨ 𝜃) ↔ (𝜃 ∨ 𝜓)) | |
| 4 | orcom 870 | . 2 ⊢ ((𝜒 ∨ 𝜃) ↔ (𝜃 ∨ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi1 917 orbi12d 918 eueq2 3678 uneq1 4120 r19.45zv 4462 rexprgf 4655 rextpg 4659 swopolem 5549 ordsseleq 6349 ordtri3 6356 frxp2 8100 xpord2pred 8101 xpord2indlem 8103 frxp3 8107 xpord3pred 8108 infltoreq 9431 cantnflem1 9618 axgroth2 10754 axgroth3 10760 lelttric 11257 ltxr 13051 xmulneg1 13205 fzpr 13516 elfzp12 13540 caubnd 15301 lcmval 16538 lcmass 16560 isprm6 16660 vdwlem10 16937 irredmul 20314 lringuplu 20429 domneq0 20593 znfld 21446 opsrval 21929 logreclem 26648 perfectlem2 27117 nnm1n0s 28240 legov3 28501 lnhl 28518 colperpex 28636 lmif 28688 islmib 28690 friendshipgt3 30300 h1datom 31484 xrlelttric 32648 tlt3 32869 prmidl 33384 ismxidl 33406 rprmdvds 33463 esumpcvgval 34041 sibfof 34304 satfvsuc 35321 satfv1 35323 satfvsucsuc 35325 satf0suc 35336 sat1el2xp 35339 fmlasuc0 35344 fmlafvel 35345 satfv1fvfmla1 35383 segcon2 36066 wl-ifpimpr 37427 poimirlem25 37612 cnambfre 37635 pridl 38004 ismaxidl 38007 ispridlc 38037 pridlc 38038 dmnnzd 38042 disjecxrncnvep 38349 4atlem3a 39564 pmapjoin 39819 lcfl3 41461 lcfl4N 41462 sticksstones22 42129 ordsssucb 43297 sbcoreleleqVD 44821 fourierdlem80 46157 euoreqb 47083 el1fzopredsuc 47299 perfectALTVlem2 47696 nnsum3primesle9 47768 clnbupgrel 47808 dfvopnbgr2 47826 lindslinindsimp2 48425 |
| Copyright terms: Public domain | W3C validator |