| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbi1d | Structured version Visualization version GIF version | ||
| Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| orbi1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | orbi2d 915 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| 3 | orcom 870 | . 2 ⊢ ((𝜓 ∨ 𝜃) ↔ (𝜃 ∨ 𝜓)) | |
| 4 | orcom 870 | . 2 ⊢ ((𝜒 ∨ 𝜃) ↔ (𝜃 ∨ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi1 917 orbi12d 918 eueq2 3698 uneq1 4141 r19.45zv 4483 rexprgf 4676 rextpg 4680 swopolem 5576 ordsseleq 6386 ordtri3 6393 frxp2 8148 xpord2pred 8149 xpord2indlem 8151 frxp3 8155 xpord3pred 8156 infltoreq 9521 cantnflem1 9708 axgroth2 10844 axgroth3 10850 lelttric 11347 ltxr 13136 xmulneg1 13290 fzpr 13601 elfzp12 13625 caubnd 15382 lcmval 16616 lcmass 16638 isprm6 16738 vdwlem10 17015 irredmul 20394 lringuplu 20509 domneq0 20673 znfld 21526 opsrval 22009 logreclem 26729 perfectlem2 27198 nnm1n0s 28321 legov3 28582 lnhl 28599 colperpex 28717 lmif 28769 islmib 28771 friendshipgt3 30384 h1datom 31568 xrlelttric 32734 tlt3 32955 prmidl 33460 ismxidl 33482 rprmdvds 33539 esumpcvgval 34114 sibfof 34377 satfvsuc 35388 satfv1 35390 satfvsucsuc 35392 satf0suc 35403 sat1el2xp 35406 fmlasuc0 35411 fmlafvel 35412 satfv1fvfmla1 35450 segcon2 36128 wl-ifpimpr 37489 poimirlem25 37674 cnambfre 37697 pridl 38066 ismaxidl 38069 ispridlc 38099 pridlc 38100 dmnnzd 38104 disjecxrncnvep 38413 4atlem3a 39621 pmapjoin 39876 lcfl3 41518 lcfl4N 41519 sticksstones22 42186 ordsssucb 43334 sbcoreleleqVD 44858 fourierdlem80 46195 euoreqb 47118 el1fzopredsuc 47334 perfectALTVlem2 47716 nnsum3primesle9 47788 clnbupgrel 47828 dfvopnbgr2 47846 lindslinindsimp2 48419 |
| Copyright terms: Public domain | W3C validator |