![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orbi1d | Structured version Visualization version GIF version |
Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
orbi1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | orbi2d 915 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
3 | orcom 869 | . 2 ⊢ ((𝜓 ∨ 𝜃) ↔ (𝜃 ∨ 𝜓)) | |
4 | orcom 869 | . 2 ⊢ ((𝜒 ∨ 𝜃) ↔ (𝜃 ∨ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 847 |
This theorem is referenced by: orbi1 917 orbi12d 918 eueq2 3707 uneq1 4157 r19.45zv 4503 rexprgf 4698 rextpg 4704 swopolem 5599 ordsseleq 6394 ordtri3 6401 frxp2 8130 xpord2pred 8131 xpord2indlem 8133 frxp3 8137 xpord3pred 8138 infltoreq 9497 cantnflem1 9684 axgroth2 10820 axgroth3 10826 lelttric 11321 ltxr 13095 xmulneg1 13248 fzpr 13556 elfzp12 13580 caubnd 15305 lcmval 16529 lcmass 16551 isprm6 16651 vdwlem10 16923 irredmul 20243 lringuplu 20314 domneq0 20913 znfld 21116 opsrval 21601 logreclem 26267 perfectlem2 26733 legov3 27880 lnhl 27897 colperpex 28015 lmif 28067 islmib 28069 friendshipgt3 29682 h1datom 30866 xrlelttric 31996 tlt3 32171 prmidl 32589 ismxidl 32609 esumpcvgval 33107 sibfof 33370 satfvsuc 34383 satfv1 34385 satfvsucsuc 34387 satf0suc 34398 sat1el2xp 34401 fmlasuc0 34406 fmlafvel 34407 satfv1fvfmla1 34445 segcon2 35108 wl-ifpimpr 36395 poimirlem25 36561 cnambfre 36584 pridl 36953 ismaxidl 36956 ispridlc 36986 pridlc 36987 dmnnzd 36991 disjecxrncnvep 37308 4atlem3a 38516 pmapjoin 38771 lcfl3 40413 lcfl4N 40414 sticksstones22 41032 ordsssucb 42133 sbcoreleleqVD 43668 fourierdlem80 44950 euoreqb 45865 el1fzopredsuc 46081 perfectALTVlem2 46438 nnsum3primesle9 46510 lindslinindsimp2 47192 |
Copyright terms: Public domain | W3C validator |