| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbi1d | Structured version Visualization version GIF version | ||
| Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| orbi1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | orbi2d 915 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| 3 | orcom 870 | . 2 ⊢ ((𝜓 ∨ 𝜃) ↔ (𝜃 ∨ 𝜓)) | |
| 4 | orcom 870 | . 2 ⊢ ((𝜒 ∨ 𝜃) ↔ (𝜃 ∨ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi1 917 orbi12d 918 eueq2 3672 uneq1 4114 r19.45zv 4456 rexprgf 4649 rextpg 4653 swopolem 5541 ordsseleq 6340 ordtri3 6347 frxp2 8084 xpord2pred 8085 xpord2indlem 8087 frxp3 8091 xpord3pred 8092 infltoreq 9413 cantnflem1 9604 axgroth2 10738 axgroth3 10744 lelttric 11242 ltxr 13036 xmulneg1 13190 fzpr 13501 elfzp12 13525 caubnd 15285 lcmval 16522 lcmass 16544 isprm6 16644 vdwlem10 16921 irredmul 20333 lringuplu 20448 domneq0 20612 znfld 21486 opsrval 21970 logreclem 26689 perfectlem2 27158 nnm1n0s 28288 legov3 28562 lnhl 28579 colperpex 28697 lmif 28749 islmib 28751 friendshipgt3 30361 h1datom 31545 xrlelttric 32714 tlt3 32931 prmidl 33396 ismxidl 33418 rprmdvds 33475 esumpcvgval 34064 sibfof 34327 satfvsuc 35353 satfv1 35355 satfvsucsuc 35357 satf0suc 35368 sat1el2xp 35371 fmlasuc0 35376 fmlafvel 35377 satfv1fvfmla1 35415 segcon2 36098 wl-ifpimpr 37459 poimirlem25 37644 cnambfre 37667 pridl 38036 ismaxidl 38039 ispridlc 38069 pridlc 38070 dmnnzd 38074 disjecxrncnvep 38381 4atlem3a 39596 pmapjoin 39851 lcfl3 41493 lcfl4N 41494 sticksstones22 42161 ordsssucb 43328 sbcoreleleqVD 44852 fourierdlem80 46187 euoreqb 47113 el1fzopredsuc 47329 perfectALTVlem2 47726 nnsum3primesle9 47798 clnbupgrel 47838 dfvopnbgr2 47857 lindslinindsimp2 48468 |
| Copyright terms: Public domain | W3C validator |