Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > orfa | Structured version Visualization version GIF version |
Description: The falsum ⊥ can be removed from a disjunction. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
Ref | Expression |
---|---|
orfa | ⊢ ((𝜑 ∨ ⊥) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 866 | . . . 4 ⊢ ((𝜑 ∨ ⊥) ↔ (⊥ ∨ 𝜑)) | |
2 | df-or 844 | . . . 4 ⊢ ((⊥ ∨ 𝜑) ↔ (¬ ⊥ → 𝜑)) | |
3 | 1, 2 | bitri 274 | . . 3 ⊢ ((𝜑 ∨ ⊥) ↔ (¬ ⊥ → 𝜑)) |
4 | fal 1553 | . . . 4 ⊢ ¬ ⊥ | |
5 | pm2.27 42 | . . . 4 ⊢ (¬ ⊥ → ((¬ ⊥ → 𝜑) → 𝜑)) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ ((¬ ⊥ → 𝜑) → 𝜑) |
7 | 3, 6 | sylbi 216 | . 2 ⊢ ((𝜑 ∨ ⊥) → 𝜑) |
8 | orc 863 | . 2 ⊢ (𝜑 → (𝜑 ∨ ⊥)) | |
9 | 7, 8 | impbii 208 | 1 ⊢ ((𝜑 ∨ ⊥) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 843 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 df-tru 1542 df-fal 1552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |