| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orfa | Structured version Visualization version GIF version | ||
| Description: The falsum ⊥ can be removed from a disjunction. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
| Ref | Expression |
|---|---|
| orfa | ⊢ ((𝜑 ∨ ⊥) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom 870 | . . . 4 ⊢ ((𝜑 ∨ ⊥) ↔ (⊥ ∨ 𝜑)) | |
| 2 | df-or 848 | . . . 4 ⊢ ((⊥ ∨ 𝜑) ↔ (¬ ⊥ → 𝜑)) | |
| 3 | 1, 2 | bitri 275 | . . 3 ⊢ ((𝜑 ∨ ⊥) ↔ (¬ ⊥ → 𝜑)) |
| 4 | fal 1553 | . . . 4 ⊢ ¬ ⊥ | |
| 5 | pm2.27 42 | . . . 4 ⊢ (¬ ⊥ → ((¬ ⊥ → 𝜑) → 𝜑)) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ ((¬ ⊥ → 𝜑) → 𝜑) |
| 7 | 3, 6 | sylbi 217 | . 2 ⊢ ((𝜑 ∨ ⊥) → 𝜑) |
| 8 | orc 867 | . 2 ⊢ (𝜑 → (𝜑 ∨ ⊥)) | |
| 9 | 7, 8 | impbii 209 | 1 ⊢ ((𝜑 ∨ ⊥) ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 ⊥wfal 1551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-tru 1542 df-fal 1552 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |