| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orordir | Structured version Visualization version GIF version | ||
| Description: Distribution of disjunction over disjunction. (Contributed by NM, 25-Feb-1995.) |
| Ref | Expression |
|---|---|
| orordir | ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ ((𝜑 ∨ 𝜒) ∨ (𝜓 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oridm 905 | . . 3 ⊢ ((𝜒 ∨ 𝜒) ↔ 𝜒) | |
| 2 | 1 | orbi2i 913 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ (𝜒 ∨ 𝜒)) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
| 3 | or4 927 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ (𝜒 ∨ 𝜒)) ↔ ((𝜑 ∨ 𝜒) ∨ (𝜓 ∨ 𝜒))) | |
| 4 | 2, 3 | bitr3i 277 | 1 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ ((𝜑 ∨ 𝜒) ∨ (𝜓 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 849 |
| This theorem is referenced by: sspsstri 4105 psslinpr 11071 elznn0 12628 tosso 18464 elzs2 28385 legso 28607 |
| Copyright terms: Public domain | W3C validator |