MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orordir Structured version   Visualization version   GIF version

Theorem orordir 927
Description: Distribution of disjunction over disjunction. (Contributed by NM, 25-Feb-1995.)
Assertion
Ref Expression
orordir (((𝜑𝜓) ∨ 𝜒) ↔ ((𝜑𝜒) ∨ (𝜓𝜒)))

Proof of Theorem orordir
StepHypRef Expression
1 oridm 902 . . 3 ((𝜒𝜒) ↔ 𝜒)
21orbi2i 910 . 2 (((𝜑𝜓) ∨ (𝜒𝜒)) ↔ ((𝜑𝜓) ∨ 𝜒))
3 or4 924 . 2 (((𝜑𝜓) ∨ (𝜒𝜒)) ↔ ((𝜑𝜒) ∨ (𝜓𝜒)))
42, 3bitr3i 276 1 (((𝜑𝜓) ∨ 𝜒) ↔ ((𝜑𝜒) ∨ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845
This theorem is referenced by:  sspsstri  4042  psslinpr  10786  elznn0  12332  tosso  18133  legso  26956
  Copyright terms: Public domain W3C validator