| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imbi12i | Structured version Visualization version GIF version | ||
| Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 1-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
| imbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| imbi12i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi12i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | imbi12i.2 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | imbi12 346 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)))) | |
| 4 | 1, 2, 3 | mp2 9 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: orimdi 930 nanbi 1501 rb-bijust 1750 sbnf 2313 sbnf2 2358 sb8mo 2596 raleqbii 3310 rmo5 3364 cbvrmo 3388 sstr2 3936 ss2ab 4008 sbcssg 4467 ssextss 5392 ssrel3 5725 relop 5789 dmcosseq 5916 dmcosseqOLD 5917 dmcosseqOLDOLD 5918 intasym 6061 intirr 6064 codir 6066 qfto 6067 cnvpo 6234 dfpo2 6243 dffun2 6491 dff14a 7204 porpss 7660 funcnvuni 7862 poxp 8058 infcllem 9372 ttrclss 9610 cp 9784 aceq2 10010 kmlem12 10053 kmlem15 10056 zfcndpow 10507 grothprim 10725 dfinfre 12103 infrenegsup 12105 xrinfmss2 13210 algcvgblem 16488 isprm2 16593 odulub 18311 oduglb 18313 isirred2 20339 isdomn2OLD 20627 isdomn3 20630 opprdomnb 20632 ntreq0 22992 ist0-3 23260 ist1-3 23264 ordthaus 23299 dfconn2 23334 iscusp2 24216 mdsymlem8 32390 mo5f 32468 iuninc 32540 suppss2f 32620 tosglblem 32955 prmidl0 33415 esumpfinvalf 34089 bnj110 34870 bnj92 34874 bnj539 34903 bnj540 34904 axrepprim 35746 axacprim 35751 dffr5 35798 dfso2 35799 elpotr 35823 bj-alcomexcom 36724 itg2addnclem2 37722 isdmn3 38124 sbcimi 38160 inxpss3 38362 trcoss2 38596 unitscyglem3 42300 eu6w 42779 moxfr 42795 ifpim123g 43603 elmapintrab 43679 undmrnresiss 43707 cnvssco 43709 snhesn 43889 psshepw 43891 frege77 44043 frege93 44059 frege116 44082 frege118 44084 frege131 44097 frege133 44099 ntrneikb 44197 ismnuprim 44397 onfrALTlem5 44645 onfrALTlem5VD 44987 dfac5prim 45093 permaxpow 45112 permac8prim 45117 setis 49809 |
| Copyright terms: Public domain | W3C validator |