| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imbi12i | Structured version Visualization version GIF version | ||
| Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 1-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
| imbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| imbi12i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi12i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | imbi12i.2 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | imbi12 346 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)))) | |
| 4 | 1, 2, 3 | mp2 9 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: orimdi 930 nanbi 1500 rb-bijust 1749 sbnf 2311 sbnf2 2356 sb8mo 2594 raleqbii 3317 rmo5 3374 cbvrmo 3398 sstr2 3953 ss2ab 4025 sbcssg 4483 ssextss 5413 ssrel3 5749 relop 5814 dmcosseq 5940 dmcosseqOLD 5941 cotrgOLDOLD 6082 cnvsymOLDOLD 6087 intasym 6088 intirr 6091 codir 6093 qfto 6094 cnvpo 6260 dfpo2 6269 dffun2 6521 dffun2OLD 6522 dff14a 7245 porpss 7703 funcnvuni 7908 poxp 8107 infcllem 9439 ttrclss 9673 cp 9844 aceq2 10072 kmlem12 10115 kmlem15 10118 zfcndpow 10569 grothprim 10787 dfinfre 12164 infrenegsup 12166 xrinfmss2 13271 algcvgblem 16547 isprm2 16652 odulub 18366 oduglb 18368 isirred2 20330 isdomn2OLD 20621 isdomn3 20624 opprdomnb 20626 ntreq0 22964 ist0-3 23232 ist1-3 23236 ordthaus 23271 dfconn2 23306 iscusp2 24189 mdsymlem8 32339 mo5f 32418 iuninc 32489 suppss2f 32562 tosglblem 32900 prmidl0 33421 esumpfinvalf 34066 bnj110 34848 bnj92 34852 bnj539 34881 bnj540 34882 axrepprim 35689 axacprim 35694 dffr5 35741 dfso2 35742 elpotr 35769 bj-alcomexcom 36668 itg2addnclem2 37666 isdmn3 38068 sbcimi 38104 inxpss3 38302 trcoss2 38475 unitscyglem3 42185 eu6w 42664 moxfr 42680 ifpim123g 43489 elmapintrab 43565 undmrnresiss 43593 cnvssco 43595 snhesn 43775 psshepw 43777 frege77 43929 frege93 43945 frege116 43968 frege118 43970 frege131 43983 frege133 43985 ntrneikb 44083 ismnuprim 44283 onfrALTlem5 44532 onfrALTlem5VD 44874 dfac5prim 44980 permaxpow 44999 permac8prim 45004 setis 49687 |
| Copyright terms: Public domain | W3C validator |