| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imbi12i | Structured version Visualization version GIF version | ||
| Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 1-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
| imbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| imbi12i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi12i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | imbi12i.2 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | imbi12 346 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)))) | |
| 4 | 1, 2, 3 | mp2 9 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: orimdi 930 nanbi 1500 rb-bijust 1749 sbnf 2311 sbnf2 2356 sb8mo 2594 raleqbii 3314 rmo5 3371 cbvrmo 3395 sstr2 3950 ss2ab 4022 sbcssg 4479 ssextss 5408 ssrel3 5740 relop 5804 dmcosseq 5929 dmcosseqOLD 5930 cnvsymOLDOLD 6075 intasym 6076 intirr 6079 codir 6081 qfto 6082 cnvpo 6248 dfpo2 6257 dffun2 6509 dffun2OLD 6510 dff14a 7227 porpss 7683 funcnvuni 7888 poxp 8084 infcllem 9415 ttrclss 9649 cp 9820 aceq2 10048 kmlem12 10091 kmlem15 10094 zfcndpow 10545 grothprim 10763 dfinfre 12140 infrenegsup 12142 xrinfmss2 13247 algcvgblem 16523 isprm2 16628 odulub 18342 oduglb 18344 isirred2 20306 isdomn2OLD 20597 isdomn3 20600 opprdomnb 20602 ntreq0 22940 ist0-3 23208 ist1-3 23212 ordthaus 23247 dfconn2 23282 iscusp2 24165 mdsymlem8 32312 mo5f 32391 iuninc 32462 suppss2f 32535 tosglblem 32873 prmidl0 33394 esumpfinvalf 34039 bnj110 34821 bnj92 34825 bnj539 34854 bnj540 34855 axrepprim 35662 axacprim 35667 dffr5 35714 dfso2 35715 elpotr 35742 bj-alcomexcom 36641 itg2addnclem2 37639 isdmn3 38041 sbcimi 38077 inxpss3 38275 trcoss2 38448 unitscyglem3 42158 eu6w 42637 moxfr 42653 ifpim123g 43462 elmapintrab 43538 undmrnresiss 43566 cnvssco 43568 snhesn 43748 psshepw 43750 frege77 43902 frege93 43918 frege116 43941 frege118 43943 frege131 43956 frege133 43958 ntrneikb 44056 ismnuprim 44256 onfrALTlem5 44505 onfrALTlem5VD 44847 dfac5prim 44953 permaxpow 44972 permac8prim 44977 setis 49660 |
| Copyright terms: Public domain | W3C validator |