![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imbi12i | Structured version Visualization version GIF version |
Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 1-Aug-1993.) |
Ref | Expression |
---|---|
imbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
imbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
imbi12i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi12i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | imbi12i.2 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
3 | imbi12 346 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)))) | |
4 | 1, 2, 3 | mp2 9 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: orimdi 930 nanbi 1496 rb-bijust 1745 sbnf 2310 sbnf2 2358 sb8mo 2598 raleqbii 3341 rmo5 3397 cbvrmo 3425 sstr2 4001 ss2ab 4071 sbcssg 4525 ssextss 5463 ssrel3 5798 relop 5863 dmcosseq 5989 dmcosseqOLD 5990 cotrgOLDOLD 6131 cnvsymOLDOLD 6136 intasym 6137 intirr 6140 codir 6142 qfto 6143 cnvpo 6308 dfpo2 6317 dffun2 6572 dffun2OLD 6573 dff14a 7289 porpss 7745 funcnvuni 7954 poxp 8151 infcllem 9524 ttrclss 9757 cp 9928 aceq2 10156 kmlem12 10199 kmlem15 10202 zfcndpow 10653 grothprim 10871 dfinfre 12246 infrenegsup 12248 xrinfmss2 13349 algcvgblem 16610 isprm2 16715 odulub 18464 oduglb 18466 isirred2 20437 isdomn2OLD 20728 isdomn3 20731 opprdomnb 20733 ntreq0 23100 ist0-3 23368 ist1-3 23372 ordthaus 23407 dfconn2 23442 iscusp2 24326 mdsymlem8 32438 mo5f 32516 iuninc 32580 suppss2f 32654 tosglblem 32948 prmidl0 33457 esumpfinvalf 34056 bnj110 34850 bnj92 34854 bnj539 34883 bnj540 34884 axrepprim 35681 axacprim 35686 dffr5 35733 dfso2 35734 elpotr 35762 bj-alcomexcom 36662 itg2addnclem2 37658 isdmn3 38060 sbcimi 38096 inxpss3 38295 trcoss2 38465 unitscyglem3 42178 eu6w 42662 moxfr 42679 ifpim123g 43489 elmapintrab 43565 undmrnresiss 43593 cnvssco 43595 snhesn 43775 psshepw 43777 frege77 43929 frege93 43945 frege116 43968 frege118 43970 frege131 43983 frege133 43985 ntrneikb 44083 ismnuprim 44289 onfrALTlem5 44539 onfrALTlem5VD 44882 setis 48928 |
Copyright terms: Public domain | W3C validator |