| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imbi12i | Structured version Visualization version GIF version | ||
| Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 1-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
| imbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| imbi12i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi12i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | imbi12i.2 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | imbi12 346 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)))) | |
| 4 | 1, 2, 3 | mp2 9 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: orimdi 930 nanbi 1500 rb-bijust 1749 sbnf 2312 sbnf2 2360 sb8mo 2600 raleqbii 3323 rmo5 3379 cbvrmo 3408 sstr2 3965 ss2ab 4037 sbcssg 4495 ssextss 5428 ssrel3 5765 relop 5830 dmcosseq 5956 dmcosseqOLD 5957 cotrgOLDOLD 6098 cnvsymOLDOLD 6103 intasym 6104 intirr 6107 codir 6109 qfto 6110 cnvpo 6276 dfpo2 6285 dffun2 6541 dffun2OLD 6542 dff14a 7263 porpss 7721 funcnvuni 7928 poxp 8127 infcllem 9500 ttrclss 9734 cp 9905 aceq2 10133 kmlem12 10176 kmlem15 10179 zfcndpow 10630 grothprim 10848 dfinfre 12223 infrenegsup 12225 xrinfmss2 13327 algcvgblem 16596 isprm2 16701 odulub 18417 oduglb 18419 isirred2 20381 isdomn2OLD 20672 isdomn3 20675 opprdomnb 20677 ntreq0 23015 ist0-3 23283 ist1-3 23287 ordthaus 23322 dfconn2 23357 iscusp2 24240 mdsymlem8 32391 mo5f 32470 iuninc 32541 suppss2f 32616 tosglblem 32954 prmidl0 33465 esumpfinvalf 34107 bnj110 34889 bnj92 34893 bnj539 34922 bnj540 34923 axrepprim 35719 axacprim 35724 dffr5 35771 dfso2 35772 elpotr 35799 bj-alcomexcom 36698 itg2addnclem2 37696 isdmn3 38098 sbcimi 38134 inxpss3 38332 trcoss2 38502 unitscyglem3 42210 eu6w 42699 moxfr 42715 ifpim123g 43524 elmapintrab 43600 undmrnresiss 43628 cnvssco 43630 snhesn 43810 psshepw 43812 frege77 43964 frege93 43980 frege116 44003 frege118 44005 frege131 44018 frege133 44020 ntrneikb 44118 ismnuprim 44318 onfrALTlem5 44567 onfrALTlem5VD 44909 dfac5prim 45015 permaxpow 45034 setis 49562 |
| Copyright terms: Public domain | W3C validator |