| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imbi12i | Structured version Visualization version GIF version | ||
| Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 1-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
| imbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| imbi12i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi12i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | imbi12i.2 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | imbi12 346 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)))) | |
| 4 | 1, 2, 3 | mp2 9 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: orimdi 930 nanbi 1500 rb-bijust 1749 sbnf 2311 sbnf2 2356 sb8mo 2594 raleqbii 3314 rmo5 3371 cbvrmo 3395 sstr2 3950 ss2ab 4022 sbcssg 4479 ssextss 5408 ssrel3 5740 relop 5804 dmcosseq 5929 dmcosseqOLD 5930 cnvsymOLDOLD 6075 intasym 6076 intirr 6079 codir 6081 qfto 6082 cnvpo 6248 dfpo2 6257 dffun2 6509 dffun2OLD 6510 dff14a 7227 porpss 7683 funcnvuni 7888 poxp 8084 infcllem 9415 ttrclss 9649 cp 9820 aceq2 10048 kmlem12 10091 kmlem15 10094 zfcndpow 10545 grothprim 10763 dfinfre 12140 infrenegsup 12142 xrinfmss2 13247 algcvgblem 16523 isprm2 16628 odulub 18346 oduglb 18348 isirred2 20341 isdomn2OLD 20632 isdomn3 20635 opprdomnb 20637 ntreq0 22997 ist0-3 23265 ist1-3 23269 ordthaus 23304 dfconn2 23339 iscusp2 24222 mdsymlem8 32389 mo5f 32468 iuninc 32539 suppss2f 32612 tosglblem 32946 prmidl0 33414 esumpfinvalf 34059 bnj110 34841 bnj92 34845 bnj539 34874 bnj540 34875 axrepprim 35682 axacprim 35687 dffr5 35734 dfso2 35735 elpotr 35762 bj-alcomexcom 36661 itg2addnclem2 37659 isdmn3 38061 sbcimi 38097 inxpss3 38295 trcoss2 38468 unitscyglem3 42178 eu6w 42657 moxfr 42673 ifpim123g 43482 elmapintrab 43558 undmrnresiss 43586 cnvssco 43588 snhesn 43768 psshepw 43770 frege77 43922 frege93 43938 frege116 43961 frege118 43963 frege131 43976 frege133 43978 ntrneikb 44076 ismnuprim 44276 onfrALTlem5 44525 onfrALTlem5VD 44867 dfac5prim 44973 permaxpow 44992 permac8prim 44997 setis 49680 |
| Copyright terms: Public domain | W3C validator |