| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imbi12i | Structured version Visualization version GIF version | ||
| Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 1-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
| imbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| imbi12i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi12i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | imbi12i.2 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | imbi12 346 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)))) | |
| 4 | 1, 2, 3 | mp2 9 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: orimdi 930 nanbi 1500 rb-bijust 1749 sbnf 2311 sbnf2 2357 sb8mo 2595 raleqbii 3319 rmo5 3376 cbvrmo 3401 sstr2 3956 ss2ab 4028 sbcssg 4486 ssextss 5416 ssrel3 5752 relop 5817 dmcosseq 5943 dmcosseqOLD 5944 cotrgOLDOLD 6085 cnvsymOLDOLD 6090 intasym 6091 intirr 6094 codir 6096 qfto 6097 cnvpo 6263 dfpo2 6272 dffun2 6524 dffun2OLD 6525 dff14a 7248 porpss 7706 funcnvuni 7911 poxp 8110 infcllem 9446 ttrclss 9680 cp 9851 aceq2 10079 kmlem12 10122 kmlem15 10125 zfcndpow 10576 grothprim 10794 dfinfre 12171 infrenegsup 12173 xrinfmss2 13278 algcvgblem 16554 isprm2 16659 odulub 18373 oduglb 18375 isirred2 20337 isdomn2OLD 20628 isdomn3 20631 opprdomnb 20633 ntreq0 22971 ist0-3 23239 ist1-3 23243 ordthaus 23278 dfconn2 23313 iscusp2 24196 mdsymlem8 32346 mo5f 32425 iuninc 32496 suppss2f 32569 tosglblem 32907 prmidl0 33428 esumpfinvalf 34073 bnj110 34855 bnj92 34859 bnj539 34888 bnj540 34889 axrepprim 35696 axacprim 35701 dffr5 35748 dfso2 35749 elpotr 35776 bj-alcomexcom 36675 itg2addnclem2 37673 isdmn3 38075 sbcimi 38111 inxpss3 38309 trcoss2 38482 unitscyglem3 42192 eu6w 42671 moxfr 42687 ifpim123g 43496 elmapintrab 43572 undmrnresiss 43600 cnvssco 43602 snhesn 43782 psshepw 43784 frege77 43936 frege93 43952 frege116 43975 frege118 43977 frege131 43990 frege133 43992 ntrneikb 44090 ismnuprim 44290 onfrALTlem5 44539 onfrALTlem5VD 44881 dfac5prim 44987 permaxpow 45006 permac8prim 45011 setis 49691 |
| Copyright terms: Public domain | W3C validator |