![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imbi12i | Structured version Visualization version GIF version |
Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 1-Aug-1993.) |
Ref | Expression |
---|---|
imbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
imbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
imbi12i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi12i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | imbi12i.2 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
3 | imbi12 339 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)))) | |
4 | 1, 2, 3 | mp2 9 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 |
This theorem is referenced by: orimdi 914 nanbi 1475 rb-bijust 1712 sbnf2 2291 sb8mo 2635 cbvmoOLD 2639 raleqbii 3175 rmo5 3368 cbvrmo 3376 ss2ab 3923 sbcssg 4340 trintOLD 5043 ssextss 5199 relop 5567 dmcosseq 5683 cotrg 5808 cnvsym 5811 intasym 5812 intirr 5815 codir 5817 qfto 5818 cnvpo 5973 dff14a 6851 porpss 7269 funcnvuni 7449 poxp 7625 infcllem 8744 cp 9112 aceq2 9337 kmlem12 9379 kmlem15 9382 zfcndpow 9834 grothprim 10052 dfinfre 11421 infrenegsup 11423 xrinfmss2 12518 algcvgblem 15775 isprm2 15880 oduglb 17619 odulub 17621 isirred2 19186 isdomn2 19805 ntreq0 21401 ist0-3 21669 ist1-3 21673 ordthaus 21708 dfconn2 21743 iscusp2 22626 mdsymlem8 29980 mo5f 30047 iuninc 30095 suppss2f 30160 tosglblem 30411 esumpfinvalf 31008 bnj110 31806 bnj92 31810 bnj539 31839 bnj540 31840 axrepprim 32477 axacprim 32482 dffr5 32538 dfso2 32539 dfpo2 32540 elpotr 32575 bj-alcomexcom 33553 itg2addnclem2 34414 isdmn3 34823 sbcimi 34861 ssrel3 35029 inxpss3 35044 trcoss2 35198 moxfr 38713 isdomn3 39229 ifpim123g 39291 elmapintrab 39327 undmrnresiss 39355 cnvssco 39357 snhesn 39524 psshepw 39526 frege77 39678 frege93 39694 frege116 39717 frege118 39719 frege131 39732 frege133 39734 ntrneikb 39836 ismnuprim 40034 onfrALTlem5 40324 onfrALTlem5VD 40667 setis 44192 |
Copyright terms: Public domain | W3C validator |