| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imbi12i | Structured version Visualization version GIF version | ||
| Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 1-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
| imbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| imbi12i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi12i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | imbi12i.2 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | imbi12 346 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)))) | |
| 4 | 1, 2, 3 | mp2 9 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: orimdi 930 nanbi 1500 rb-bijust 1749 sbnf 2311 sbnf2 2356 sb8mo 2594 raleqbii 3307 rmo5 3363 cbvrmo 3387 sstr2 3942 ss2ab 4014 sbcssg 4471 ssextss 5396 ssrel3 5729 relop 5793 dmcosseq 5919 dmcosseqOLD 5920 dmcosseqOLDOLD 5921 intasym 6064 intirr 6067 codir 6069 qfto 6070 cnvpo 6235 dfpo2 6244 dffun2 6492 dff14a 7207 porpss 7663 funcnvuni 7865 poxp 8061 infcllem 9378 ttrclss 9616 cp 9787 aceq2 10013 kmlem12 10056 kmlem15 10059 zfcndpow 10510 grothprim 10728 dfinfre 12106 infrenegsup 12108 xrinfmss2 13213 algcvgblem 16488 isprm2 16593 odulub 18311 oduglb 18313 isirred2 20306 isdomn2OLD 20597 isdomn3 20600 opprdomnb 20602 ntreq0 22962 ist0-3 23230 ist1-3 23234 ordthaus 23269 dfconn2 23304 iscusp2 24187 mdsymlem8 32354 mo5f 32433 iuninc 32504 suppss2f 32581 tosglblem 32916 prmidl0 33387 esumpfinvalf 34043 bnj110 34825 bnj92 34829 bnj539 34858 bnj540 34859 axrepprim 35679 axacprim 35684 dffr5 35731 dfso2 35732 elpotr 35759 bj-alcomexcom 36658 itg2addnclem2 37656 isdmn3 38058 sbcimi 38094 inxpss3 38292 trcoss2 38465 unitscyglem3 42174 eu6w 42653 moxfr 42669 ifpim123g 43477 elmapintrab 43553 undmrnresiss 43581 cnvssco 43583 snhesn 43763 psshepw 43765 frege77 43917 frege93 43933 frege116 43956 frege118 43958 frege131 43971 frege133 43973 ntrneikb 44071 ismnuprim 44271 onfrALTlem5 44520 onfrALTlem5VD 44862 dfac5prim 44968 permaxpow 44987 permac8prim 44992 setis 49687 |
| Copyright terms: Public domain | W3C validator |