![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imbi12i | Structured version Visualization version GIF version |
Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 1-Aug-1993.) |
Ref | Expression |
---|---|
imbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
imbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
imbi12i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi12i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | imbi12i.2 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
3 | imbi12 346 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)))) | |
4 | 1, 2, 3 | mp2 9 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: orimdi 929 nanbi 1497 rb-bijust 1747 sbnf 2316 sbnf2 2364 sb8mo 2604 raleqbii 3352 rmo5 3408 cbvrmo 3436 sstr2 4015 ss2ab 4085 sbcssg 4543 ssextss 5473 ssrel3 5810 relop 5875 dmcosseq 5999 dmcosseqOLD 6000 cotrgOLDOLD 6141 cnvsymOLDOLD 6146 intasym 6147 intirr 6150 codir 6152 qfto 6153 cnvpo 6318 dfpo2 6327 dffun2 6583 dffun2OLD 6584 dff14a 7307 porpss 7762 funcnvuni 7972 poxp 8169 infcllem 9556 ttrclss 9789 cp 9960 aceq2 10188 kmlem12 10231 kmlem15 10234 zfcndpow 10685 grothprim 10903 dfinfre 12276 infrenegsup 12278 xrinfmss2 13373 algcvgblem 16624 isprm2 16729 odulub 18477 oduglb 18479 isirred2 20447 isdomn2OLD 20734 isdomn3 20737 opprdomnb 20739 ntreq0 23106 ist0-3 23374 ist1-3 23378 ordthaus 23413 dfconn2 23448 iscusp2 24332 mdsymlem8 32442 mo5f 32517 iuninc 32583 suppss2f 32657 tosglblem 32947 prmidl0 33443 esumpfinvalf 34040 bnj110 34834 bnj92 34838 bnj539 34867 bnj540 34868 axrepprim 35664 axacprim 35669 dffr5 35716 dfso2 35717 elpotr 35745 bj-alcomexcom 36646 itg2addnclem2 37632 isdmn3 38034 sbcimi 38070 inxpss3 38270 trcoss2 38440 unitscyglem3 42154 eu6w 42631 moxfr 42648 ifpim123g 43462 elmapintrab 43538 undmrnresiss 43566 cnvssco 43568 snhesn 43748 psshepw 43750 frege77 43902 frege93 43918 frege116 43941 frege118 43943 frege131 43956 frege133 43958 ntrneikb 44056 ismnuprim 44263 onfrALTlem5 44513 onfrALTlem5VD 44856 setis 48790 |
Copyright terms: Public domain | W3C validator |