Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imbi12i | Structured version Visualization version GIF version |
Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 1-Aug-1993.) |
Ref | Expression |
---|---|
imbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
imbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
imbi12i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi12i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | imbi12i.2 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
3 | imbi12 347 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)))) | |
4 | 1, 2, 3 | mp2 9 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: orimdi 928 nanbi 1495 rb-bijust 1752 sbnf2 2356 sb8mo 2601 cbvmowOLD 2604 raleqbii 3163 rmo5 3365 cbvrmowOLD 3378 cbvrmo 3382 ss2ab 3993 sbcssg 4454 ssextss 5369 relop 5759 dmcosseq 5882 cotrg 6016 cnvsym 6019 intasym 6020 intirr 6023 codir 6025 qfto 6026 cnvpo 6190 dfpo2 6199 dffun2 6443 dff14a 7143 porpss 7580 funcnvuni 7778 poxp 7969 infcllem 9246 ttrclss 9478 cp 9649 aceq2 9875 kmlem12 9917 kmlem15 9920 zfcndpow 10372 grothprim 10590 dfinfre 11956 infrenegsup 11958 xrinfmss2 13045 algcvgblem 16282 isprm2 16387 odulub 18125 oduglb 18127 isirred2 19943 isdomn2 20570 ntreq0 22228 ist0-3 22496 ist1-3 22500 ordthaus 22535 dfconn2 22570 iscusp2 23454 mdsymlem8 30772 mo5f 30837 iuninc 30900 suppss2f 30974 tosglblem 31252 prmidl0 31626 esumpfinvalf 32044 bnj110 32838 bnj92 32842 bnj539 32871 bnj540 32872 axrepprim 33643 axacprim 33648 dffr5 33721 dfso2 33722 elpotr 33757 bj-alcomexcom 34862 itg2addnclem2 35829 isdmn3 36232 sbcimi 36268 ssrel3 36434 inxpss3 36449 trcoss2 36602 moxfr 40514 isdomn3 41029 ifpim123g 41107 elmapintrab 41184 undmrnresiss 41212 cnvssco 41214 snhesn 41394 psshepw 41396 frege77 41548 frege93 41564 frege116 41587 frege118 41589 frege131 41602 frege133 41604 ntrneikb 41704 ismnuprim 41912 onfrALTlem5 42162 onfrALTlem5VD 42505 setis 46403 |
Copyright terms: Public domain | W3C validator |