Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imbi12i | Structured version Visualization version GIF version |
Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 1-Aug-1993.) |
Ref | Expression |
---|---|
imbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
imbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
imbi12i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi12i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | imbi12i.2 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
3 | imbi12 346 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)))) | |
4 | 1, 2, 3 | mp2 9 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: orimdi 927 nanbi 1492 rb-bijust 1753 sbnf2 2356 sb8mo 2601 cbvmowOLD 2604 raleqbii 3160 rmo5 3355 cbvrmowOLD 3367 cbvrmo 3371 ss2ab 3989 sbcssg 4451 ssextss 5363 relop 5748 dmcosseq 5871 cotrg 6005 cnvsym 6008 intasym 6009 intirr 6012 codir 6014 qfto 6015 cnvpo 6179 dfpo2 6188 dff14a 7124 porpss 7558 funcnvuni 7752 poxp 7940 infcllem 9176 cp 9580 aceq2 9806 kmlem12 9848 kmlem15 9851 zfcndpow 10303 grothprim 10521 dfinfre 11886 infrenegsup 11888 xrinfmss2 12974 algcvgblem 16210 isprm2 16315 odulub 18040 oduglb 18042 isirred2 19858 isdomn2 20483 ntreq0 22136 ist0-3 22404 ist1-3 22408 ordthaus 22443 dfconn2 22478 iscusp2 23362 mdsymlem8 30673 mo5f 30738 iuninc 30801 suppss2f 30875 tosglblem 31154 prmidl0 31528 esumpfinvalf 31944 bnj110 32738 bnj92 32742 bnj539 32771 bnj540 32772 axrepprim 33543 axacprim 33548 dffr5 33627 dfso2 33628 elpotr 33663 ttrclss 33706 bj-alcomexcom 34789 itg2addnclem2 35756 isdmn3 36159 sbcimi 36195 ssrel3 36361 inxpss3 36376 trcoss2 36529 moxfr 40430 isdomn3 40945 ifpim123g 41005 elmapintrab 41073 undmrnresiss 41101 cnvssco 41103 snhesn 41283 psshepw 41285 frege77 41437 frege93 41453 frege116 41476 frege118 41478 frege131 41491 frege133 41493 ntrneikb 41593 ismnuprim 41801 onfrALTlem5 42051 onfrALTlem5VD 42394 setis 46289 |
Copyright terms: Public domain | W3C validator |