| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imbi12i | Structured version Visualization version GIF version | ||
| Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 1-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
| imbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| imbi12i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi12i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | imbi12i.2 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | imbi12 346 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)))) | |
| 4 | 1, 2, 3 | mp2 9 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: orimdi 930 nanbi 1499 rb-bijust 1748 sbnf 2311 sbnf2 2359 sb8mo 2599 raleqbii 3327 rmo5 3383 cbvrmo 3412 sstr2 3970 ss2ab 4042 sbcssg 4500 ssextss 5438 ssrel3 5776 relop 5841 dmcosseq 5967 dmcosseqOLD 5968 cotrgOLDOLD 6109 cnvsymOLDOLD 6114 intasym 6115 intirr 6118 codir 6120 qfto 6121 cnvpo 6287 dfpo2 6296 dffun2 6551 dffun2OLD 6552 dff14a 7272 porpss 7729 funcnvuni 7936 poxp 8135 infcllem 9509 ttrclss 9742 cp 9913 aceq2 10141 kmlem12 10184 kmlem15 10187 zfcndpow 10638 grothprim 10856 dfinfre 12231 infrenegsup 12233 xrinfmss2 13335 algcvgblem 16596 isprm2 16701 odulub 18421 oduglb 18423 isirred2 20389 isdomn2OLD 20680 isdomn3 20683 opprdomnb 20685 ntreq0 23031 ist0-3 23299 ist1-3 23303 ordthaus 23338 dfconn2 23373 iscusp2 24256 mdsymlem8 32357 mo5f 32436 iuninc 32508 suppss2f 32583 tosglblem 32903 prmidl0 33413 esumpfinvalf 34036 bnj110 34831 bnj92 34835 bnj539 34864 bnj540 34865 axrepprim 35661 axacprim 35666 dffr5 35713 dfso2 35714 elpotr 35741 bj-alcomexcom 36640 itg2addnclem2 37638 isdmn3 38040 sbcimi 38076 inxpss3 38274 trcoss2 38444 unitscyglem3 42157 eu6w 42649 moxfr 42666 ifpim123g 43475 elmapintrab 43551 undmrnresiss 43579 cnvssco 43581 snhesn 43761 psshepw 43763 frege77 43915 frege93 43931 frege116 43954 frege118 43956 frege131 43969 frege133 43971 ntrneikb 44069 ismnuprim 44270 onfrALTlem5 44519 onfrALTlem5VD 44862 dfac5prim 44964 setis 49225 |
| Copyright terms: Public domain | W3C validator |