Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orsird Structured version   Visualization version   GIF version

Theorem orsird 36352
Description: A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
Hypothesis
Ref Expression
orsird.1 (𝜑 → ¬ (𝜓𝜒))
Assertion
Ref Expression
orsird (𝜑 → ¬ 𝜒)

Proof of Theorem orsird
StepHypRef Expression
1 orsird.1 . . 3 (𝜑 → ¬ (𝜓𝜒))
2 ioran 981 . . 3 (¬ (𝜓𝜒) ↔ (¬ 𝜓 ∧ ¬ 𝜒))
31, 2sylib 217 . 2 (𝜑 → (¬ 𝜓 ∧ ¬ 𝜒))
43simprd 496 1 (𝜑 → ¬ 𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator