Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ioran | Structured version Visualization version GIF version |
Description: Negated disjunction in terms of conjunction (De Morgan's law). Compare Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
ioran | ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.65 410 | . 2 ⊢ (¬ (¬ 𝜑 → 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
2 | pm4.64 847 | . 2 ⊢ ((¬ 𝜑 → 𝜓) ↔ (𝜑 ∨ 𝜓)) | |
3 | 1, 2 | xchnxbi 336 | 1 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) |
Copyright terms: Public domain | W3C validator |