| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnf1dd | Structured version Visualization version GIF version | ||
| Description: A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
| Ref | Expression |
|---|---|
| cnf1dd.1 | ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
| cnf1dd.2 | ⊢ (𝜑 → (𝜓 → (𝜒 ∨ 𝜃))) |
| Ref | Expression |
|---|---|
| cnf1dd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnf1dd.1 | . . 3 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | |
| 2 | cnf1dd.2 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 ∨ 𝜃))) | |
| 3 | 1, 2 | jcad 512 | . 2 ⊢ (𝜑 → (𝜓 → (¬ 𝜒 ∧ (𝜒 ∨ 𝜃)))) |
| 4 | df-or 849 | . . 3 ⊢ ((𝜒 ∨ 𝜃) ↔ (¬ 𝜒 → 𝜃)) | |
| 5 | pm3.35 803 | . . 3 ⊢ ((¬ 𝜒 ∧ (¬ 𝜒 → 𝜃)) → 𝜃) | |
| 6 | 4, 5 | sylan2b 594 | . 2 ⊢ ((¬ 𝜒 ∧ (𝜒 ∨ 𝜃)) → 𝜃) |
| 7 | 3, 6 | syl6 35 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 |
| This theorem is referenced by: cnf2dd 38098 cnfn1dd 38099 mpobi123f 38169 mptbi12f 38173 ac6s6 38179 |
| Copyright terms: Public domain | W3C validator |