Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnf1dd Structured version   Visualization version   GIF version

Theorem cnf1dd 34222
Description: A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.)
Hypotheses
Ref Expression
cnf1dd.1 (𝜑 → (𝜓 → ¬ 𝜒))
cnf1dd.2 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
cnf1dd (𝜑 → (𝜓𝜃))

Proof of Theorem cnf1dd
StepHypRef Expression
1 cnf1dd.1 . . 3 (𝜑 → (𝜓 → ¬ 𝜒))
2 cnf1dd.2 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
31, 2jcad 502 . 2 (𝜑 → (𝜓 → (¬ 𝜒 ∧ (𝜒𝜃))))
4 df-or 837 . . 3 ((𝜒𝜃) ↔ (¬ 𝜒𝜃))
5 pm3.35 804 . . 3 ((¬ 𝜒 ∧ (¬ 𝜒𝜃)) → 𝜃)
64, 5sylan2b 581 . 2 ((¬ 𝜒 ∧ (𝜒𝜃)) → 𝜃)
73, 6syl6 35 1 (𝜑 → (𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  wo 836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837
This theorem is referenced by:  cnf2dd  34223  cnfn1dd  34224  mpt2bi123f  34301  mptbi12f  34305  ac6s6  34310
  Copyright terms: Public domain W3C validator