Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > plvcofph | Structured version Visualization version GIF version |
Description: Given, a,b,d, and "definitions" for c, e, f: f is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020.) |
Ref | Expression |
---|---|
plvcofph.1 | ⊢ (𝜒 ↔ ((((𝜑 ∧ 𝜓) ↔ 𝜑) → (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) ∧ (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑)))) |
plvcofph.2 | ⊢ (𝜏 ↔ ((𝜒 → 𝜃) ∧ (𝜑 ↔ 𝜒) ∧ ((𝜑 → 𝜓) → (𝜓 ↔ 𝜃)))) |
plvcofph.3 | ⊢ (𝜂 ↔ (𝜒 ∧ 𝜏)) |
plvcofph.4 | ⊢ 𝜑 |
plvcofph.5 | ⊢ 𝜓 |
plvcofph.6 | ⊢ 𝜃 |
Ref | Expression |
---|---|
plvcofph | ⊢ 𝜂 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plvcofph.1 | . . . 4 ⊢ (𝜒 ↔ ((((𝜑 ∧ 𝜓) ↔ 𝜑) → (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) ∧ (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑)))) | |
2 | plvcofph.4 | . . . 4 ⊢ 𝜑 | |
3 | plvcofph.5 | . . . 4 ⊢ 𝜓 | |
4 | 1, 2, 3 | plcofph 44111 | . . 3 ⊢ 𝜒 |
5 | plvcofph.2 | . . . 4 ⊢ (𝜏 ↔ ((𝜒 → 𝜃) ∧ (𝜑 ↔ 𝜒) ∧ ((𝜑 → 𝜓) → (𝜓 ↔ 𝜃)))) | |
6 | plvcofph.6 | . . . 4 ⊢ 𝜃 | |
7 | 5, 2, 3, 4, 6 | pldofph 44112 | . . 3 ⊢ 𝜏 |
8 | 4, 7 | pm3.2i 474 | . 2 ⊢ (𝜒 ∧ 𝜏) |
9 | plvcofph.3 | . . . 4 ⊢ (𝜂 ↔ (𝜒 ∧ 𝜏)) | |
10 | 9 | bicomi 227 | . . 3 ⊢ ((𝜒 ∧ 𝜏) ↔ 𝜂) |
11 | 10 | biimpi 219 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜂) |
12 | 8, 11 | ax-mp 5 | 1 ⊢ 𝜂 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1091 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |