Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  plcofph Structured version   Visualization version   GIF version

Theorem plcofph 44326
Description: Given, a,b and a "definition" for c, c is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020.)
Hypotheses
Ref Expression
plcofph.1 (𝜒 ↔ ((((𝜑𝜓) ↔ 𝜑) → (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) ∧ (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))))
plcofph.2 𝜑
plcofph.3 𝜓
Assertion
Ref Expression
plcofph 𝜒

Proof of Theorem plcofph
StepHypRef Expression
1 plcofph.2 . . . . 5 𝜑
2 pm3.24 402 . . . . 5 ¬ (𝜑 ∧ ¬ 𝜑)
31, 2pm3.2i 470 . . . 4 (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))
43a1i 11 . . 3 (((𝜑𝜓) ↔ 𝜑) → (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑)))
54, 3pm3.2i 470 . 2 ((((𝜑𝜓) ↔ 𝜑) → (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) ∧ (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑)))
6 plcofph.1 . . . 4 (𝜒 ↔ ((((𝜑𝜓) ↔ 𝜑) → (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) ∧ (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))))
76bicomi 223 . . 3 (((((𝜑𝜓) ↔ 𝜑) → (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) ∧ (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) ↔ 𝜒)
87biimpi 215 . 2 (((((𝜑𝜓) ↔ 𝜑) → (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) ∧ (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) → 𝜒)
95, 8ax-mp 5 1 𝜒
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  plvcofph  44328  plvcofphax  44329
  Copyright terms: Public domain W3C validator