| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > plcofph | Structured version Visualization version GIF version | ||
| Description: Given, a,b and a "definition" for c, c is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020.) |
| Ref | Expression |
|---|---|
| plcofph.1 | ⊢ (𝜒 ↔ ((((𝜑 ∧ 𝜓) ↔ 𝜑) → (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) ∧ (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑)))) |
| plcofph.2 | ⊢ 𝜑 |
| plcofph.3 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| plcofph | ⊢ 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plcofph.2 | . . . . 5 ⊢ 𝜑 | |
| 2 | pm3.24 402 | . . . . 5 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) | |
| 3 | 1, 2 | pm3.2i 470 | . . . 4 ⊢ (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑)) |
| 4 | 3 | a1i 11 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ↔ 𝜑) → (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) |
| 5 | 4, 3 | pm3.2i 470 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ↔ 𝜑) → (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) ∧ (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) |
| 6 | plcofph.1 | . . . 4 ⊢ (𝜒 ↔ ((((𝜑 ∧ 𝜓) ↔ 𝜑) → (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) ∧ (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑)))) | |
| 7 | 6 | bicomi 224 | . . 3 ⊢ (((((𝜑 ∧ 𝜓) ↔ 𝜑) → (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) ∧ (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) ↔ 𝜒) |
| 8 | 7 | biimpi 216 | . 2 ⊢ (((((𝜑 ∧ 𝜓) ↔ 𝜑) → (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) ∧ (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) → 𝜒) |
| 9 | 5, 8 | ax-mp 5 | 1 ⊢ 𝜒 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: plvcofph 46963 plvcofphax 46964 |
| Copyright terms: Public domain | W3C validator |