| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pldofph | Structured version Visualization version GIF version | ||
| Description: Given, a,b c, d, "definition" for e, e is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020.) |
| Ref | Expression |
|---|---|
| pldofph.1 | ⊢ (𝜏 ↔ ((𝜒 → 𝜃) ∧ (𝜑 ↔ 𝜒) ∧ ((𝜑 → 𝜓) → (𝜓 ↔ 𝜃)))) |
| pldofph.2 | ⊢ 𝜑 |
| pldofph.3 | ⊢ 𝜓 |
| pldofph.4 | ⊢ 𝜒 |
| pldofph.5 | ⊢ 𝜃 |
| Ref | Expression |
|---|---|
| pldofph | ⊢ 𝜏 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pldofph.5 | . . . 4 ⊢ 𝜃 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜒 → 𝜃) |
| 3 | pldofph.2 | . . . 4 ⊢ 𝜑 | |
| 4 | pldofph.4 | . . . 4 ⊢ 𝜒 | |
| 5 | 3, 4 | 2th 264 | . . 3 ⊢ (𝜑 ↔ 𝜒) |
| 6 | pldofph.3 | . . . . 5 ⊢ 𝜓 | |
| 7 | 6, 1 | 2th 264 | . . . 4 ⊢ (𝜓 ↔ 𝜃) |
| 8 | 7 | a1i 11 | . . 3 ⊢ ((𝜑 → 𝜓) → (𝜓 ↔ 𝜃)) |
| 9 | 2, 5, 8 | 3pm3.2i 1339 | . 2 ⊢ ((𝜒 → 𝜃) ∧ (𝜑 ↔ 𝜒) ∧ ((𝜑 → 𝜓) → (𝜓 ↔ 𝜃))) |
| 10 | pldofph.1 | . . . 4 ⊢ (𝜏 ↔ ((𝜒 → 𝜃) ∧ (𝜑 ↔ 𝜒) ∧ ((𝜑 → 𝜓) → (𝜓 ↔ 𝜃)))) | |
| 11 | 10 | bicomi 224 | . . 3 ⊢ (((𝜒 → 𝜃) ∧ (𝜑 ↔ 𝜒) ∧ ((𝜑 → 𝜓) → (𝜓 ↔ 𝜃))) ↔ 𝜏) |
| 12 | 11 | biimpi 216 | . 2 ⊢ (((𝜒 → 𝜃) ∧ (𝜑 ↔ 𝜒) ∧ ((𝜑 → 𝜓) → (𝜓 ↔ 𝜃))) → 𝜏) |
| 13 | 9, 12 | ax-mp 5 | 1 ⊢ 𝜏 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: plvcofph 46892 plvcofphax 46893 |
| Copyright terms: Public domain | W3C validator |