Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pldofph | Structured version Visualization version GIF version |
Description: Given, a,b c, d, "definition" for e, e is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020.) |
Ref | Expression |
---|---|
pldofph.1 | ⊢ (𝜏 ↔ ((𝜒 → 𝜃) ∧ (𝜑 ↔ 𝜒) ∧ ((𝜑 → 𝜓) → (𝜓 ↔ 𝜃)))) |
pldofph.2 | ⊢ 𝜑 |
pldofph.3 | ⊢ 𝜓 |
pldofph.4 | ⊢ 𝜒 |
pldofph.5 | ⊢ 𝜃 |
Ref | Expression |
---|---|
pldofph | ⊢ 𝜏 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pldofph.5 | . . . 4 ⊢ 𝜃 | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜒 → 𝜃) |
3 | pldofph.2 | . . . 4 ⊢ 𝜑 | |
4 | pldofph.4 | . . . 4 ⊢ 𝜒 | |
5 | 3, 4 | 2th 263 | . . 3 ⊢ (𝜑 ↔ 𝜒) |
6 | pldofph.3 | . . . . 5 ⊢ 𝜓 | |
7 | 6, 1 | 2th 263 | . . . 4 ⊢ (𝜓 ↔ 𝜃) |
8 | 7 | a1i 11 | . . 3 ⊢ ((𝜑 → 𝜓) → (𝜓 ↔ 𝜃)) |
9 | 2, 5, 8 | 3pm3.2i 1337 | . 2 ⊢ ((𝜒 → 𝜃) ∧ (𝜑 ↔ 𝜒) ∧ ((𝜑 → 𝜓) → (𝜓 ↔ 𝜃))) |
10 | pldofph.1 | . . . 4 ⊢ (𝜏 ↔ ((𝜒 → 𝜃) ∧ (𝜑 ↔ 𝜒) ∧ ((𝜑 → 𝜓) → (𝜓 ↔ 𝜃)))) | |
11 | 10 | bicomi 223 | . . 3 ⊢ (((𝜒 → 𝜃) ∧ (𝜑 ↔ 𝜒) ∧ ((𝜑 → 𝜓) → (𝜓 ↔ 𝜃))) ↔ 𝜏) |
12 | 11 | biimpi 215 | . 2 ⊢ (((𝜒 → 𝜃) ∧ (𝜑 ↔ 𝜒) ∧ ((𝜑 → 𝜓) → (𝜓 ↔ 𝜃))) → 𝜏) |
13 | 9, 12 | ax-mp 5 | 1 ⊢ 𝜏 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: plvcofph 44328 plvcofphax 44329 |
Copyright terms: Public domain | W3C validator |