|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pm2.61dda | Structured version Visualization version GIF version | ||
| Description: Elimination of two antecedents. (Contributed by NM, 9-Jul-2013.) | 
| Ref | Expression | 
|---|---|
| pm2.61dda.1 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜃) | 
| pm2.61dda.2 | ⊢ ((𝜑 ∧ ¬ 𝜒) → 𝜃) | 
| pm2.61dda.3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | 
| Ref | Expression | 
|---|---|
| pm2.61dda | ⊢ (𝜑 → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm2.61dda.3 | . . . 4 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | 
| 3 | pm2.61dda.2 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝜒) → 𝜃) | |
| 4 | 3 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ ¬ 𝜒) → 𝜃) | 
| 5 | 2, 4 | pm2.61dan 812 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | 
| 6 | pm2.61dda.1 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜃) | |
| 7 | 5, 6 | pm2.61dan 812 | 1 ⊢ (𝜑 → 𝜃) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: lhpexle1lem 40010 lclkrlem2x 41533 | 
| Copyright terms: Public domain | W3C validator |