Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle1lem Structured version   Visualization version   GIF version

Theorem lhpexle1lem 39990
Description: Lemma for lhpexle1 39991 and others that eliminates restrictions on 𝑋. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
lhpexle1lem.1 (𝜑 → ∃𝑝𝐴 (𝑝 𝑊𝜓))
lhpexle1lem.2 ((𝜑 ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝜓𝑝𝑋))
Assertion
Ref Expression
lhpexle1lem (𝜑 → ∃𝑝𝐴 (𝑝 𝑊𝜓𝑝𝑋))
Distinct variable groups:   ,𝑝   𝐴,𝑝   𝑊,𝑝   𝑋,𝑝   𝜑,𝑝
Allowed substitution hint:   𝜓(𝑝)

Proof of Theorem lhpexle1lem
StepHypRef Expression
1 lhpexle1lem.1 . . . 4 (𝜑 → ∃𝑝𝐴 (𝑝 𝑊𝜓))
21adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋𝐴) → ∃𝑝𝐴 (𝑝 𝑊𝜓))
3 simprl 771 . . . . . 6 ((((𝜑 ∧ ¬ 𝑋𝐴) ∧ 𝑝𝐴) ∧ (𝑝 𝑊𝜓)) → 𝑝 𝑊)
4 simprr 773 . . . . . 6 ((((𝜑 ∧ ¬ 𝑋𝐴) ∧ 𝑝𝐴) ∧ (𝑝 𝑊𝜓)) → 𝜓)
5 simplr 769 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑋𝐴) ∧ 𝑝𝐴) ∧ (𝑝 𝑊𝜓)) → 𝑝𝐴)
6 simpllr 776 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑋𝐴) ∧ 𝑝𝐴) ∧ (𝑝 𝑊𝜓)) → ¬ 𝑋𝐴)
7 nelne2 3038 . . . . . . 7 ((𝑝𝐴 ∧ ¬ 𝑋𝐴) → 𝑝𝑋)
85, 6, 7syl2anc 584 . . . . . 6 ((((𝜑 ∧ ¬ 𝑋𝐴) ∧ 𝑝𝐴) ∧ (𝑝 𝑊𝜓)) → 𝑝𝑋)
93, 4, 83jca 1127 . . . . 5 ((((𝜑 ∧ ¬ 𝑋𝐴) ∧ 𝑝𝐴) ∧ (𝑝 𝑊𝜓)) → (𝑝 𝑊𝜓𝑝𝑋))
109ex 412 . . . 4 (((𝜑 ∧ ¬ 𝑋𝐴) ∧ 𝑝𝐴) → ((𝑝 𝑊𝜓) → (𝑝 𝑊𝜓𝑝𝑋)))
1110reximdva 3166 . . 3 ((𝜑 ∧ ¬ 𝑋𝐴) → (∃𝑝𝐴 (𝑝 𝑊𝜓) → ∃𝑝𝐴 (𝑝 𝑊𝜓𝑝𝑋)))
122, 11mpd 15 . 2 ((𝜑 ∧ ¬ 𝑋𝐴) → ∃𝑝𝐴 (𝑝 𝑊𝜓𝑝𝑋))
131adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 𝑊) → ∃𝑝𝐴 (𝑝 𝑊𝜓))
14 simprl 771 . . . . . 6 (((𝜑 ∧ ¬ 𝑋 𝑊) ∧ (𝑝 𝑊𝜓)) → 𝑝 𝑊)
15 simprr 773 . . . . . 6 (((𝜑 ∧ ¬ 𝑋 𝑊) ∧ (𝑝 𝑊𝜓)) → 𝜓)
16 simplr 769 . . . . . . 7 (((𝜑 ∧ ¬ 𝑋 𝑊) ∧ (𝑝 𝑊𝜓)) → ¬ 𝑋 𝑊)
17 nbrne2 5168 . . . . . . 7 ((𝑝 𝑊 ∧ ¬ 𝑋 𝑊) → 𝑝𝑋)
1814, 16, 17syl2anc 584 . . . . . 6 (((𝜑 ∧ ¬ 𝑋 𝑊) ∧ (𝑝 𝑊𝜓)) → 𝑝𝑋)
1914, 15, 183jca 1127 . . . . 5 (((𝜑 ∧ ¬ 𝑋 𝑊) ∧ (𝑝 𝑊𝜓)) → (𝑝 𝑊𝜓𝑝𝑋))
2019ex 412 . . . 4 ((𝜑 ∧ ¬ 𝑋 𝑊) → ((𝑝 𝑊𝜓) → (𝑝 𝑊𝜓𝑝𝑋)))
2120reximdv 3168 . . 3 ((𝜑 ∧ ¬ 𝑋 𝑊) → (∃𝑝𝐴 (𝑝 𝑊𝜓) → ∃𝑝𝐴 (𝑝 𝑊𝜓𝑝𝑋)))
2213, 21mpd 15 . 2 ((𝜑 ∧ ¬ 𝑋 𝑊) → ∃𝑝𝐴 (𝑝 𝑊𝜓𝑝𝑋))
23 lhpexle1lem.2 . 2 ((𝜑 ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝜓𝑝𝑋))
2412, 22, 23pm2.61dda 815 1 (𝜑 → ∃𝑝𝐴 (𝑝 𝑊𝜓𝑝𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wcel 2106  wne 2938  wrex 3068   class class class wbr 5148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149
This theorem is referenced by:  lhpexle1  39991  lhpexle2  39993  lhpexle3  39995
  Copyright terms: Public domain W3C validator