Step | Hyp | Ref
| Expression |
1 | | df-ne 2940 |
. . 3
β’ (((πΈ + πΊ)βπ) β
(0gβ(Scalarβπ)) β Β¬ ((πΈ + πΊ)βπ) = (0gβ(Scalarβπ))) |
2 | | lclkrlem2x.v |
. . . 4
β’ π = (Baseβπ) |
3 | | eqid 2731 |
. . . 4
β’ (
Β·π βπ) = ( Β·π
βπ) |
4 | | eqid 2731 |
. . . 4
β’
(Scalarβπ) =
(Scalarβπ) |
5 | | eqid 2731 |
. . . 4
β’
(.rβ(Scalarβπ)) =
(.rβ(Scalarβπ)) |
6 | | eqid 2731 |
. . . 4
β’
(0gβ(Scalarβπ)) =
(0gβ(Scalarβπ)) |
7 | | eqid 2731 |
. . . 4
β’
(invrβ(Scalarβπ)) =
(invrβ(Scalarβπ)) |
8 | | eqid 2731 |
. . . 4
β’
(-gβπ) = (-gβπ) |
9 | | lclkrlem2x.f |
. . . 4
β’ πΉ = (LFnlβπ) |
10 | | lclkrlem2x.d |
. . . 4
β’ π· = (LDualβπ) |
11 | | lclkrlem2x.p |
. . . 4
β’ + =
(+gβπ·) |
12 | | lclkrlem2x.x |
. . . . 5
β’ (π β π β π) |
13 | 12 | adantr 480 |
. . . 4
β’ ((π β§ ((πΈ + πΊ)βπ) β
(0gβ(Scalarβπ))) β π β π) |
14 | | lclkrlem2x.y |
. . . . 5
β’ (π β π β π) |
15 | 14 | adantr 480 |
. . . 4
β’ ((π β§ ((πΈ + πΊ)βπ) β
(0gβ(Scalarβπ))) β π β π) |
16 | | lclkrlem2x.e |
. . . . 5
β’ (π β πΈ β πΉ) |
17 | 16 | adantr 480 |
. . . 4
β’ ((π β§ ((πΈ + πΊ)βπ) β
(0gβ(Scalarβπ))) β πΈ β πΉ) |
18 | | lclkrlem2x.g |
. . . . 5
β’ (π β πΊ β πΉ) |
19 | 18 | adantr 480 |
. . . 4
β’ ((π β§ ((πΈ + πΊ)βπ) β
(0gβ(Scalarβπ))) β πΊ β πΉ) |
20 | | eqid 2731 |
. . . 4
β’
(LSpanβπ) =
(LSpanβπ) |
21 | | lclkrlem2x.l |
. . . 4
β’ πΏ = (LKerβπ) |
22 | | lclkrlem2x.h |
. . . 4
β’ π» = (LHypβπΎ) |
23 | | lclkrlem2x.o |
. . . 4
β’ β₯ =
((ocHβπΎ)βπ) |
24 | | lclkrlem2x.u |
. . . 4
β’ π = ((DVecHβπΎ)βπ) |
25 | | eqid 2731 |
. . . 4
β’
(LSSumβπ) =
(LSSumβπ) |
26 | | lclkrlem2x.k |
. . . . 5
β’ (π β (πΎ β HL β§ π β π»)) |
27 | 26 | adantr 480 |
. . . 4
β’ ((π β§ ((πΈ + πΊ)βπ) β
(0gβ(Scalarβπ))) β (πΎ β HL β§ π β π»)) |
28 | | lclkrlem2x.le |
. . . . 5
β’ (π β (πΏβπΈ) = ( β₯ β{π})) |
29 | 28 | adantr 480 |
. . . 4
β’ ((π β§ ((πΈ + πΊ)βπ) β
(0gβ(Scalarβπ))) β (πΏβπΈ) = ( β₯ β{π})) |
30 | | lclkrlem2x.lg |
. . . . 5
β’ (π β (πΏβπΊ) = ( β₯ β{π})) |
31 | 30 | adantr 480 |
. . . 4
β’ ((π β§ ((πΈ + πΊ)βπ) β
(0gβ(Scalarβπ))) β (πΏβπΊ) = ( β₯ β{π})) |
32 | | simpr 484 |
. . . 4
β’ ((π β§ ((πΈ + πΊ)βπ) β
(0gβ(Scalarβπ))) β ((πΈ + πΊ)βπ) β
(0gβ(Scalarβπ))) |
33 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31, 32 | lclkrlem2u 40702 |
. . 3
β’ ((π β§ ((πΈ + πΊ)βπ) β
(0gβ(Scalarβπ))) β ( β₯ β( β₯
β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
34 | 1, 33 | sylan2br 594 |
. 2
β’ ((π β§ Β¬ ((πΈ + πΊ)βπ) = (0gβ(Scalarβπ))) β ( β₯ β( β₯
β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
35 | | df-ne 2940 |
. . 3
β’ (((πΈ + πΊ)βπ) β
(0gβ(Scalarβπ)) β Β¬ ((πΈ + πΊ)βπ) = (0gβ(Scalarβπ))) |
36 | 12 | adantr 480 |
. . . 4
β’ ((π β§ ((πΈ + πΊ)βπ) β
(0gβ(Scalarβπ))) β π β π) |
37 | 14 | adantr 480 |
. . . 4
β’ ((π β§ ((πΈ + πΊ)βπ) β
(0gβ(Scalarβπ))) β π β π) |
38 | 16 | adantr 480 |
. . . 4
β’ ((π β§ ((πΈ + πΊ)βπ) β
(0gβ(Scalarβπ))) β πΈ β πΉ) |
39 | 18 | adantr 480 |
. . . 4
β’ ((π β§ ((πΈ + πΊ)βπ) β
(0gβ(Scalarβπ))) β πΊ β πΉ) |
40 | 26 | adantr 480 |
. . . 4
β’ ((π β§ ((πΈ + πΊ)βπ) β
(0gβ(Scalarβπ))) β (πΎ β HL β§ π β π»)) |
41 | 28 | adantr 480 |
. . . 4
β’ ((π β§ ((πΈ + πΊ)βπ) β
(0gβ(Scalarβπ))) β (πΏβπΈ) = ( β₯ β{π})) |
42 | 30 | adantr 480 |
. . . 4
β’ ((π β§ ((πΈ + πΊ)βπ) β
(0gβ(Scalarβπ))) β (πΏβπΊ) = ( β₯ β{π})) |
43 | | simpr 484 |
. . . 4
β’ ((π β§ ((πΈ + πΊ)βπ) β
(0gβ(Scalarβπ))) β ((πΈ + πΊ)βπ) β
(0gβ(Scalarβπ))) |
44 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 36, 37, 38, 39, 20, 21, 22, 23, 24, 25, 40, 41, 42, 43 | lclkrlem2t 40701 |
. . 3
β’ ((π β§ ((πΈ + πΊ)βπ) β
(0gβ(Scalarβπ))) β ( β₯ β( β₯
β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
45 | 35, 44 | sylan2br 594 |
. 2
β’ ((π β§ Β¬ ((πΈ + πΊ)βπ) = (0gβ(Scalarβπ))) β ( β₯ β( β₯
β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
46 | 12 | adantr 480 |
. . 3
β’ ((π β§ (((πΈ + πΊ)βπ) = (0gβ(Scalarβπ)) β§ ((πΈ + πΊ)βπ) = (0gβ(Scalarβπ)))) β π β π) |
47 | 14 | adantr 480 |
. . 3
β’ ((π β§ (((πΈ + πΊ)βπ) = (0gβ(Scalarβπ)) β§ ((πΈ + πΊ)βπ) = (0gβ(Scalarβπ)))) β π β π) |
48 | 16 | adantr 480 |
. . 3
β’ ((π β§ (((πΈ + πΊ)βπ) = (0gβ(Scalarβπ)) β§ ((πΈ + πΊ)βπ) = (0gβ(Scalarβπ)))) β πΈ β πΉ) |
49 | 18 | adantr 480 |
. . 3
β’ ((π β§ (((πΈ + πΊ)βπ) = (0gβ(Scalarβπ)) β§ ((πΈ + πΊ)βπ) = (0gβ(Scalarβπ)))) β πΊ β πΉ) |
50 | 26 | adantr 480 |
. . 3
β’ ((π β§ (((πΈ + πΊ)βπ) = (0gβ(Scalarβπ)) β§ ((πΈ + πΊ)βπ) = (0gβ(Scalarβπ)))) β (πΎ β HL β§ π β π»)) |
51 | 28 | adantr 480 |
. . 3
β’ ((π β§ (((πΈ + πΊ)βπ) = (0gβ(Scalarβπ)) β§ ((πΈ + πΊ)βπ) = (0gβ(Scalarβπ)))) β (πΏβπΈ) = ( β₯ β{π})) |
52 | 30 | adantr 480 |
. . 3
β’ ((π β§ (((πΈ + πΊ)βπ) = (0gβ(Scalarβπ)) β§ ((πΈ + πΊ)βπ) = (0gβ(Scalarβπ)))) β (πΏβπΊ) = ( β₯ β{π})) |
53 | | simprl 768 |
. . 3
β’ ((π β§ (((πΈ + πΊ)βπ) = (0gβ(Scalarβπ)) β§ ((πΈ + πΊ)βπ) = (0gβ(Scalarβπ)))) β ((πΈ + πΊ)βπ) = (0gβ(Scalarβπ))) |
54 | | simprr 770 |
. . 3
β’ ((π β§ (((πΈ + πΊ)βπ) = (0gβ(Scalarβπ)) β§ ((πΈ + πΊ)βπ) = (0gβ(Scalarβπ)))) β ((πΈ + πΊ)βπ) = (0gβ(Scalarβπ))) |
55 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 46, 47, 48, 49, 20, 21, 22, 23, 24, 25, 50, 51, 52, 53, 54 | lclkrlem2w 40704 |
. 2
β’ ((π β§ (((πΈ + πΊ)βπ) = (0gβ(Scalarβπ)) β§ ((πΈ + πΊ)βπ) = (0gβ(Scalarβπ)))) β ( β₯ β( β₯
β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
56 | 34, 45, 55 | pm2.61dda 812 |
1
β’ (π β ( β₯ β( β₯
β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |