|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2x | Structured version Visualization version GIF version | ||
| Description: Lemma for lclkr 41535. Eliminate by cases the hypotheses of lclkrlem2u 41529, lclkrlem2u 41529 and lclkrlem2w 41531. (Contributed by NM, 18-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| lclkrlem2x.l | ⊢ 𝐿 = (LKer‘𝑈) | 
| lclkrlem2x.h | ⊢ 𝐻 = (LHyp‘𝐾) | 
| lclkrlem2x.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | 
| lclkrlem2x.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| lclkrlem2x.v | ⊢ 𝑉 = (Base‘𝑈) | 
| lclkrlem2x.f | ⊢ 𝐹 = (LFnl‘𝑈) | 
| lclkrlem2x.d | ⊢ 𝐷 = (LDual‘𝑈) | 
| lclkrlem2x.p | ⊢ + = (+g‘𝐷) | 
| lclkrlem2x.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| lclkrlem2x.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) | 
| lclkrlem2x.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) | 
| lclkrlem2x.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) | 
| lclkrlem2x.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) | 
| lclkrlem2x.le | ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) | 
| lclkrlem2x.lg | ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) | 
| Ref | Expression | 
|---|---|
| lclkrlem2x | ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ne 2941 | . . 3 ⊢ (((𝐸 + 𝐺)‘𝑋) ≠ (0g‘(Scalar‘𝑈)) ↔ ¬ ((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈))) | |
| 2 | lclkrlem2x.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
| 3 | eqid 2737 | . . . 4 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
| 4 | eqid 2737 | . . . 4 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
| 5 | eqid 2737 | . . . 4 ⊢ (.r‘(Scalar‘𝑈)) = (.r‘(Scalar‘𝑈)) | |
| 6 | eqid 2737 | . . . 4 ⊢ (0g‘(Scalar‘𝑈)) = (0g‘(Scalar‘𝑈)) | |
| 7 | eqid 2737 | . . . 4 ⊢ (invr‘(Scalar‘𝑈)) = (invr‘(Scalar‘𝑈)) | |
| 8 | eqid 2737 | . . . 4 ⊢ (-g‘𝑈) = (-g‘𝑈) | |
| 9 | lclkrlem2x.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 10 | lclkrlem2x.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑈) | |
| 11 | lclkrlem2x.p | . . . 4 ⊢ + = (+g‘𝐷) | |
| 12 | lclkrlem2x.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑋) ≠ (0g‘(Scalar‘𝑈))) → 𝑋 ∈ 𝑉) | 
| 14 | lclkrlem2x.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 15 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑋) ≠ (0g‘(Scalar‘𝑈))) → 𝑌 ∈ 𝑉) | 
| 16 | lclkrlem2x.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑋) ≠ (0g‘(Scalar‘𝑈))) → 𝐸 ∈ 𝐹) | 
| 18 | lclkrlem2x.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 19 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑋) ≠ (0g‘(Scalar‘𝑈))) → 𝐺 ∈ 𝐹) | 
| 20 | eqid 2737 | . . . 4 ⊢ (LSpan‘𝑈) = (LSpan‘𝑈) | |
| 21 | lclkrlem2x.l | . . . 4 ⊢ 𝐿 = (LKer‘𝑈) | |
| 22 | lclkrlem2x.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 23 | lclkrlem2x.o | . . . 4 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 24 | lclkrlem2x.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 25 | eqid 2737 | . . . 4 ⊢ (LSSum‘𝑈) = (LSSum‘𝑈) | |
| 26 | lclkrlem2x.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 27 | 26 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑋) ≠ (0g‘(Scalar‘𝑈))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 28 | lclkrlem2x.le | . . . . 5 ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) | |
| 29 | 28 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑋) ≠ (0g‘(Scalar‘𝑈))) → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) | 
| 30 | lclkrlem2x.lg | . . . . 5 ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) | |
| 31 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑋) ≠ (0g‘(Scalar‘𝑈))) → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) | 
| 32 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑋) ≠ (0g‘(Scalar‘𝑈))) → ((𝐸 + 𝐺)‘𝑋) ≠ (0g‘(Scalar‘𝑈))) | |
| 33 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31, 32 | lclkrlem2u 41529 | . . 3 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑋) ≠ (0g‘(Scalar‘𝑈))) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | 
| 34 | 1, 33 | sylan2br 595 | . 2 ⊢ ((𝜑 ∧ ¬ ((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈))) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | 
| 35 | df-ne 2941 | . . 3 ⊢ (((𝐸 + 𝐺)‘𝑌) ≠ (0g‘(Scalar‘𝑈)) ↔ ¬ ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈))) | |
| 36 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑌) ≠ (0g‘(Scalar‘𝑈))) → 𝑋 ∈ 𝑉) | 
| 37 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑌) ≠ (0g‘(Scalar‘𝑈))) → 𝑌 ∈ 𝑉) | 
| 38 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑌) ≠ (0g‘(Scalar‘𝑈))) → 𝐸 ∈ 𝐹) | 
| 39 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑌) ≠ (0g‘(Scalar‘𝑈))) → 𝐺 ∈ 𝐹) | 
| 40 | 26 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑌) ≠ (0g‘(Scalar‘𝑈))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 41 | 28 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑌) ≠ (0g‘(Scalar‘𝑈))) → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) | 
| 42 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑌) ≠ (0g‘(Scalar‘𝑈))) → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) | 
| 43 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑌) ≠ (0g‘(Scalar‘𝑈))) → ((𝐸 + 𝐺)‘𝑌) ≠ (0g‘(Scalar‘𝑈))) | |
| 44 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 36, 37, 38, 39, 20, 21, 22, 23, 24, 25, 40, 41, 42, 43 | lclkrlem2t 41528 | . . 3 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑌) ≠ (0g‘(Scalar‘𝑈))) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | 
| 45 | 35, 44 | sylan2br 595 | . 2 ⊢ ((𝜑 ∧ ¬ ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈))) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | 
| 46 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈)) ∧ ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈)))) → 𝑋 ∈ 𝑉) | 
| 47 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈)) ∧ ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈)))) → 𝑌 ∈ 𝑉) | 
| 48 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈)) ∧ ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈)))) → 𝐸 ∈ 𝐹) | 
| 49 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈)) ∧ ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈)))) → 𝐺 ∈ 𝐹) | 
| 50 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈)) ∧ ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 51 | 28 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈)) ∧ ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈)))) → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) | 
| 52 | 30 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈)) ∧ ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈)))) → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) | 
| 53 | simprl 771 | . . 3 ⊢ ((𝜑 ∧ (((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈)) ∧ ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈)))) → ((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈))) | |
| 54 | simprr 773 | . . 3 ⊢ ((𝜑 ∧ (((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈)) ∧ ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈)))) → ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈))) | |
| 55 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 46, 47, 48, 49, 20, 21, 22, 23, 24, 25, 50, 51, 52, 53, 54 | lclkrlem2w 41531 | . 2 ⊢ ((𝜑 ∧ (((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈)) ∧ ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈)))) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | 
| 56 | 34, 45, 55 | pm2.61dda 815 | 1 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 {csn 4626 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 +gcplusg 17297 .rcmulr 17298 Scalarcsca 17300 ·𝑠 cvsca 17301 0gc0g 17484 -gcsg 18953 LSSumclsm 19652 invrcinvr 20387 LSpanclspn 20969 LFnlclfn 39058 LKerclk 39086 LDualcld 39124 HLchlt 39351 LHypclh 39986 DVecHcdvh 41080 ocHcoch 41349 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-riotaBAD 38954 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-tpos 8251 df-undef 8298 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-0g 17486 df-mre 17629 df-mrc 17630 df-acs 17632 df-proset 18340 df-poset 18359 df-plt 18375 df-lub 18391 df-glb 18392 df-join 18393 df-meet 18394 df-p0 18470 df-p1 18471 df-lat 18477 df-clat 18544 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-subg 19141 df-cntz 19335 df-oppg 19364 df-lsm 19654 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-oppr 20334 df-dvdsr 20357 df-unit 20358 df-invr 20388 df-dvr 20401 df-drng 20731 df-lmod 20860 df-lss 20930 df-lsp 20970 df-lvec 21102 df-lsatoms 38977 df-lshyp 38978 df-lcv 39020 df-lfl 39059 df-lkr 39087 df-ldual 39125 df-oposet 39177 df-ol 39179 df-oml 39180 df-covers 39267 df-ats 39268 df-atl 39299 df-cvlat 39323 df-hlat 39352 df-llines 39500 df-lplanes 39501 df-lvols 39502 df-lines 39503 df-psubsp 39505 df-pmap 39506 df-padd 39798 df-lhyp 39990 df-laut 39991 df-ldil 40106 df-ltrn 40107 df-trl 40161 df-tgrp 40745 df-tendo 40757 df-edring 40759 df-dveca 41005 df-disoa 41031 df-dvech 41081 df-dib 41141 df-dic 41175 df-dih 41231 df-doch 41350 df-djh 41397 | 
| This theorem is referenced by: lclkrlem2y 41533 | 
| Copyright terms: Public domain | W3C validator |