![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jao1i | Structured version Visualization version GIF version |
Description: Add a disjunct in the antecedent of an implication. (Contributed by Rodolfo Medina, 24-Sep-2010.) |
Ref | Expression |
---|---|
jao1i.1 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
Ref | Expression |
---|---|
jao1i | ⊢ ((𝜑 ∨ 𝜓) → (𝜒 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ (𝜑 → (𝜒 → 𝜑)) | |
2 | jao1i.1 | . 2 ⊢ (𝜓 → (𝜒 → 𝜑)) | |
3 | 1, 2 | jaoi 856 | 1 ⊢ ((𝜑 ∨ 𝜓) → (𝜒 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 |
This theorem is referenced by: pm2.64 942 pm2.82 976 sorpssint 7768 preleqg 9684 ltlen 11391 elnnnn0b 12597 znnn0nn 12754 scshwfzeqfzo 14875 nn0enne 16425 dvdsprmpweqnn 16932 dvdsprmpweqle 16933 prmirred 21508 pmatcollpw3fi1 22815 2lgsoddprmlem3 27476 sltlend 27834 prtlem14 38830 |
Copyright terms: Public domain | W3C validator |