MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jao1i Structured version   Visualization version   GIF version

Theorem jao1i 857
Description: Add a disjunct in the antecedent of an implication. (Contributed by Rodolfo Medina, 24-Sep-2010.)
Hypothesis
Ref Expression
jao1i.1 (𝜓 → (𝜒𝜑))
Assertion
Ref Expression
jao1i ((𝜑𝜓) → (𝜒𝜑))

Proof of Theorem jao1i
StepHypRef Expression
1 ax-1 6 . 2 (𝜑 → (𝜒𝜑))
2 jao1i.1 . 2 (𝜓 → (𝜒𝜑))
31, 2jaoi 856 1 ((𝜑𝜓) → (𝜒𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 847
This theorem is referenced by:  pm2.64  942  pm2.82  976  sorpssint  7768  preleqg  9684  ltlen  11391  elnnnn0b  12597  znnn0nn  12754  scshwfzeqfzo  14875  nn0enne  16425  dvdsprmpweqnn  16932  dvdsprmpweqle  16933  prmirred  21508  pmatcollpw3fi1  22815  2lgsoddprmlem3  27476  sltlend  27834  prtlem14  38830
  Copyright terms: Public domain W3C validator