MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jao1i Structured version   Visualization version   GIF version

Theorem jao1i 858
Description: Add a disjunct in the antecedent of an implication. (Contributed by Rodolfo Medina, 24-Sep-2010.)
Hypothesis
Ref Expression
jao1i.1 (𝜓 → (𝜒𝜑))
Assertion
Ref Expression
jao1i ((𝜑𝜓) → (𝜒𝜑))

Proof of Theorem jao1i
StepHypRef Expression
1 ax-1 6 . 2 (𝜑 → (𝜒𝜑))
2 jao1i.1 . 2 (𝜓 → (𝜒𝜑))
31, 2jaoi 857 1 ((𝜑𝜓) → (𝜒𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  pm2.64  943  pm2.82  977  imadifssran  6112  sorpssint  7689  preleqg  9544  ltlen  11251  elnnnn0b  12462  znnn0nn  12621  scshwfzeqfzo  14768  nn0enne  16323  dvdsprmpweqnn  16832  dvdsprmpweqle  16833  prmirred  21360  pmatcollpw3fi1  22651  2lgsoddprmlem3  27301  sltlend  27659  prtlem14  38840
  Copyright terms: Public domain W3C validator