MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jao1i Structured version   Visualization version   GIF version

Theorem jao1i 858
Description: Add a disjunct in the antecedent of an implication. (Contributed by Rodolfo Medina, 24-Sep-2010.)
Hypothesis
Ref Expression
jao1i.1 (𝜓 → (𝜒𝜑))
Assertion
Ref Expression
jao1i ((𝜑𝜓) → (𝜒𝜑))

Proof of Theorem jao1i
StepHypRef Expression
1 ax-1 6 . 2 (𝜑 → (𝜒𝜑))
2 jao1i.1 . 2 (𝜓 → (𝜒𝜑))
31, 2jaoi 857 1 ((𝜑𝜓) → (𝜒𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  pm2.64  943  pm2.82  977  imadifssran  6145  sorpssint  7732  preleqg  9634  ltlen  11341  elnnnn0b  12550  znnn0nn  12709  scshwfzeqfzo  14850  nn0enne  16401  dvdsprmpweqnn  16910  dvdsprmpweqle  16911  prmirred  21440  pmatcollpw3fi1  22731  2lgsoddprmlem3  27382  sltlend  27740  prtlem14  38897
  Copyright terms: Public domain W3C validator