| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jao1i | Structured version Visualization version GIF version | ||
| Description: Add a disjunct in the antecedent of an implication. (Contributed by Rodolfo Medina, 24-Sep-2010.) |
| Ref | Expression |
|---|---|
| jao1i.1 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Ref | Expression |
|---|---|
| jao1i | ⊢ ((𝜑 ∨ 𝜓) → (𝜒 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . 2 ⊢ (𝜑 → (𝜒 → 𝜑)) | |
| 2 | jao1i.1 | . 2 ⊢ (𝜓 → (𝜒 → 𝜑)) | |
| 3 | 1, 2 | jaoi 857 | 1 ⊢ ((𝜑 ∨ 𝜓) → (𝜒 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: pm2.64 943 pm2.82 977 imadifssran 6098 sorpssint 7666 preleqg 9505 ltlen 11214 elnnnn0b 12425 znnn0nn 12584 scshwfzeqfzo 14733 nn0enne 16288 dvdsprmpweqnn 16797 dvdsprmpweqle 16798 prmirred 21411 pmatcollpw3fi1 22703 2lgsoddprmlem3 27352 sltlend 27710 prtlem14 38983 |
| Copyright terms: Public domain | W3C validator |