| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jao1i | Structured version Visualization version GIF version | ||
| Description: Add a disjunct in the antecedent of an implication. (Contributed by Rodolfo Medina, 24-Sep-2010.) |
| Ref | Expression |
|---|---|
| jao1i.1 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Ref | Expression |
|---|---|
| jao1i | ⊢ ((𝜑 ∨ 𝜓) → (𝜒 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . 2 ⊢ (𝜑 → (𝜒 → 𝜑)) | |
| 2 | jao1i.1 | . 2 ⊢ (𝜓 → (𝜒 → 𝜑)) | |
| 3 | 1, 2 | jaoi 857 | 1 ⊢ ((𝜑 ∨ 𝜓) → (𝜒 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: pm2.64 943 pm2.82 977 imadifssran 6112 sorpssint 7689 preleqg 9544 ltlen 11251 elnnnn0b 12462 znnn0nn 12621 scshwfzeqfzo 14768 nn0enne 16323 dvdsprmpweqnn 16832 dvdsprmpweqle 16833 prmirred 21360 pmatcollpw3fi1 22651 2lgsoddprmlem3 27301 sltlend 27659 prtlem14 38840 |
| Copyright terms: Public domain | W3C validator |