| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jao1i | Structured version Visualization version GIF version | ||
| Description: Add a disjunct in the antecedent of an implication. (Contributed by Rodolfo Medina, 24-Sep-2010.) |
| Ref | Expression |
|---|---|
| jao1i.1 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Ref | Expression |
|---|---|
| jao1i | ⊢ ((𝜑 ∨ 𝜓) → (𝜒 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . 2 ⊢ (𝜑 → (𝜒 → 𝜑)) | |
| 2 | jao1i.1 | . 2 ⊢ (𝜓 → (𝜒 → 𝜑)) | |
| 3 | 1, 2 | jaoi 857 | 1 ⊢ ((𝜑 ∨ 𝜓) → (𝜒 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: pm2.64 943 pm2.82 977 imadifssran 6124 sorpssint 7709 preleqg 9568 ltlen 11275 elnnnn0b 12486 znnn0nn 12645 scshwfzeqfzo 14792 nn0enne 16347 dvdsprmpweqnn 16856 dvdsprmpweqle 16857 prmirred 21384 pmatcollpw3fi1 22675 2lgsoddprmlem3 27325 sltlend 27683 prtlem14 38867 |
| Copyright terms: Public domain | W3C validator |