| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jao1i | Structured version Visualization version GIF version | ||
| Description: Add a disjunct in the antecedent of an implication. (Contributed by Rodolfo Medina, 24-Sep-2010.) |
| Ref | Expression |
|---|---|
| jao1i.1 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Ref | Expression |
|---|---|
| jao1i | ⊢ ((𝜑 ∨ 𝜓) → (𝜒 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . 2 ⊢ (𝜑 → (𝜒 → 𝜑)) | |
| 2 | jao1i.1 | . 2 ⊢ (𝜓 → (𝜒 → 𝜑)) | |
| 3 | 1, 2 | jaoi 857 | 1 ⊢ ((𝜑 ∨ 𝜓) → (𝜒 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: pm2.64 943 pm2.82 977 imadifssran 6127 sorpssint 7712 preleqg 9575 ltlen 11282 elnnnn0b 12493 znnn0nn 12652 scshwfzeqfzo 14799 nn0enne 16354 dvdsprmpweqnn 16863 dvdsprmpweqle 16864 prmirred 21391 pmatcollpw3fi1 22682 2lgsoddprmlem3 27332 sltlend 27690 prtlem14 38874 |
| Copyright terms: Public domain | W3C validator |