MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jao1i Structured version   Visualization version   GIF version

Theorem jao1i 858
Description: Add a disjunct in the antecedent of an implication. (Contributed by Rodolfo Medina, 24-Sep-2010.)
Hypothesis
Ref Expression
jao1i.1 (𝜓 → (𝜒𝜑))
Assertion
Ref Expression
jao1i ((𝜑𝜓) → (𝜒𝜑))

Proof of Theorem jao1i
StepHypRef Expression
1 ax-1 6 . 2 (𝜑 → (𝜒𝜑))
2 jao1i.1 . 2 (𝜓 → (𝜒𝜑))
31, 2jaoi 857 1 ((𝜑𝜓) → (𝜒𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  pm2.64  943  pm2.82  977  imadifssran  6098  sorpssint  7666  preleqg  9505  ltlen  11214  elnnnn0b  12425  znnn0nn  12584  scshwfzeqfzo  14733  nn0enne  16288  dvdsprmpweqnn  16797  dvdsprmpweqle  16798  prmirred  21411  pmatcollpw3fi1  22703  2lgsoddprmlem3  27352  sltlend  27710  prtlem14  38983
  Copyright terms: Public domain W3C validator