| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orel2 | Structured version Visualization version GIF version | ||
| Description: Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.) |
| Ref | Expression |
|---|---|
| orel2 | ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (¬ 𝜑 → (𝜓 → 𝜓)) | |
| 2 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | jaod 859 | 1 ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: pm2.64 943 pm2.74 976 pm5.61 1002 pm5.71 1029 3orel3 1488 xpcan2 6130 funun 6532 fnpr2ob 17480 ablfac1eulem 19971 drngmuleq0 20666 mdetunilem9 22523 maducoeval2 22543 deg1sublt 26031 dgrnznn 26168 dvply1 26207 aaliou2 26264 colline 28612 axcontlem2 28928 dfrdg4 35924 arg-ax 36389 unbdqndv2lem2 36483 elpell14qr2 42835 elpell1qr2 42845 jm2.22 42968 jm2.23 42969 jm2.26lem3 42974 ttac 43009 wepwsolem 43015 3ornot23VD 44820 fmul01lt1lem2 45567 cncfiooicclem1 45875 |
| Copyright terms: Public domain | W3C validator |