![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orel2 | Structured version Visualization version GIF version |
Description: Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.) |
Ref | Expression |
---|---|
orel2 | ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (¬ 𝜑 → (𝜓 → 𝜓)) | |
2 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
3 | 1, 2 | jaod 858 | 1 ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 847 |
This theorem is referenced by: pm2.64 941 pm2.74 974 pm5.61 1000 pm5.71 1027 3orel3 1487 xpcan2 6177 funun 6595 fnpr2ob 17504 ablfac1eulem 19942 drngmuleq0 20388 mdetunilem9 22122 maducoeval2 22142 tdeglem4OLD 25578 deg1sublt 25628 dgrnznn 25761 dvply1 25797 aaliou2 25853 colline 27900 axcontlem2 28223 dfrdg4 34923 arg-ax 35301 unbdqndv2lem2 35386 elpell14qr2 41600 elpell1qr2 41610 jm2.22 41734 jm2.23 41735 jm2.26lem3 41740 ttac 41775 wepwsolem 41784 3ornot23VD 43608 fmul01lt1lem2 44301 cncfiooicclem1 44609 |
Copyright terms: Public domain | W3C validator |