![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orel2 | Structured version Visualization version GIF version |
Description: Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.) |
Ref | Expression |
---|---|
orel2 | ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (¬ 𝜑 → (𝜓 → 𝜓)) | |
2 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
3 | 1, 2 | jaod 859 | 1 ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 848 |
This theorem is referenced by: pm2.64 943 pm2.74 976 pm5.61 1002 pm5.71 1029 3orel3 1485 xpcan2 6199 funun 6614 fnpr2ob 17605 ablfac1eulem 20107 drngmuleq0 20780 mdetunilem9 22642 maducoeval2 22662 deg1sublt 26164 dgrnznn 26301 dvply1 26340 aaliou2 26397 colline 28672 axcontlem2 28995 dfrdg4 35933 arg-ax 36399 unbdqndv2lem2 36493 elpell14qr2 42850 elpell1qr2 42860 jm2.22 42984 jm2.23 42985 jm2.26lem3 42990 ttac 43025 wepwsolem 43031 3ornot23VD 44845 fmul01lt1lem2 45541 cncfiooicclem1 45849 |
Copyright terms: Public domain | W3C validator |