Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orel2 | Structured version Visualization version GIF version |
Description: Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.) |
Ref | Expression |
---|---|
orel2 | ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (¬ 𝜑 → (𝜓 → 𝜓)) | |
2 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
3 | 1, 2 | jaod 855 | 1 ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: pm2.64 938 pm2.74 971 pm5.61 997 pm5.71 1024 xpcan2 6069 funun 6464 fnpr2ob 17186 ablfac1eulem 19590 drngmuleq0 19929 mdetunilem9 21677 maducoeval2 21697 tdeglem4OLD 25130 deg1sublt 25180 dgrnznn 25313 dvply1 25349 aaliou2 25405 colline 26914 axcontlem2 27236 3orel3 33557 dfrdg4 34180 arg-ax 34532 unbdqndv2lem2 34617 elpell14qr2 40600 elpell1qr2 40610 jm2.22 40733 jm2.23 40734 jm2.26lem3 40739 ttac 40774 wepwsolem 40783 3ornot23VD 42356 fmul01lt1lem2 43016 cncfiooicclem1 43324 |
Copyright terms: Public domain | W3C validator |