![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orel2 | Structured version Visualization version GIF version |
Description: Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.) |
Ref | Expression |
---|---|
orel2 | ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (¬ 𝜑 → (𝜓 → 𝜓)) | |
2 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
3 | 1, 2 | jaod 858 | 1 ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 |
This theorem is referenced by: pm2.64 942 pm2.74 975 pm5.61 1001 pm5.71 1028 3orel3 1485 xpcan2 6208 funun 6624 fnpr2ob 17618 ablfac1eulem 20116 drngmuleq0 20785 mdetunilem9 22647 maducoeval2 22667 deg1sublt 26169 dgrnznn 26306 dvply1 26343 aaliou2 26400 colline 28675 axcontlem2 28998 dfrdg4 35915 arg-ax 36382 unbdqndv2lem2 36476 elpell14qr2 42818 elpell1qr2 42828 jm2.22 42952 jm2.23 42953 jm2.26lem3 42958 ttac 42993 wepwsolem 42999 3ornot23VD 44818 fmul01lt1lem2 45506 cncfiooicclem1 45814 |
Copyright terms: Public domain | W3C validator |