| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orel2 | Structured version Visualization version GIF version | ||
| Description: Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.) |
| Ref | Expression |
|---|---|
| orel2 | ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (¬ 𝜑 → (𝜓 → 𝜓)) | |
| 2 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | jaod 859 | 1 ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: pm2.64 943 pm2.74 976 pm5.61 1002 pm5.71 1029 3orel3 1488 xpcan2 6150 funun 6562 fnpr2ob 17521 ablfac1eulem 20004 drngmuleq0 20672 mdetunilem9 22507 maducoeval2 22527 deg1sublt 26015 dgrnznn 26152 dvply1 26191 aaliou2 26248 colline 28576 axcontlem2 28892 dfrdg4 35939 arg-ax 36404 unbdqndv2lem2 36498 elpell14qr2 42850 elpell1qr2 42860 jm2.22 42984 jm2.23 42985 jm2.26lem3 42990 ttac 43025 wepwsolem 43031 3ornot23VD 44836 fmul01lt1lem2 45583 cncfiooicclem1 45891 |
| Copyright terms: Public domain | W3C validator |