| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orel2 | Structured version Visualization version GIF version | ||
| Description: Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.) |
| Ref | Expression |
|---|---|
| orel2 | ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (¬ 𝜑 → (𝜓 → 𝜓)) | |
| 2 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | jaod 859 | 1 ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: pm2.64 943 pm2.74 976 pm5.61 1002 pm5.71 1029 3orel3 1488 xpcan2 6124 funun 6527 fnpr2ob 17459 ablfac1eulem 19984 drngmuleq0 20676 mdetunilem9 22533 maducoeval2 22553 deg1sublt 26040 dgrnznn 26177 dvply1 26216 aaliou2 26273 colline 28625 axcontlem2 28941 dfrdg4 35984 arg-ax 36449 unbdqndv2lem2 36543 elpell14qr2 42894 elpell1qr2 42904 jm2.22 43027 jm2.23 43028 jm2.26lem3 43033 ttac 43068 wepwsolem 43074 3ornot23VD 44878 fmul01lt1lem2 45624 cncfiooicclem1 45930 |
| Copyright terms: Public domain | W3C validator |