| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orel2 | Structured version Visualization version GIF version | ||
| Description: Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.) |
| Ref | Expression |
|---|---|
| orel2 | ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (¬ 𝜑 → (𝜓 → 𝜓)) | |
| 2 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | jaod 859 | 1 ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: pm2.64 943 pm2.74 976 pm5.61 1002 pm5.71 1029 3orel3 1488 xpcan2 6166 funun 6582 fnpr2ob 17572 ablfac1eulem 20055 drngmuleq0 20723 mdetunilem9 22558 maducoeval2 22578 deg1sublt 26067 dgrnznn 26204 dvply1 26243 aaliou2 26300 colline 28628 axcontlem2 28944 dfrdg4 35969 arg-ax 36434 unbdqndv2lem2 36528 elpell14qr2 42885 elpell1qr2 42895 jm2.22 43019 jm2.23 43020 jm2.26lem3 43025 ttac 43060 wepwsolem 43066 3ornot23VD 44871 fmul01lt1lem2 45614 cncfiooicclem1 45922 |
| Copyright terms: Public domain | W3C validator |