| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orel2 | Structured version Visualization version GIF version | ||
| Description: Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.) |
| Ref | Expression |
|---|---|
| orel2 | ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (¬ 𝜑 → (𝜓 → 𝜓)) | |
| 2 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | jaod 860 | 1 ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 849 |
| This theorem is referenced by: pm2.64 944 pm2.74 977 pm5.61 1003 pm5.71 1030 3orel3 1488 xpcan2 6197 funun 6612 fnpr2ob 17603 ablfac1eulem 20092 drngmuleq0 20763 mdetunilem9 22626 maducoeval2 22646 deg1sublt 26149 dgrnznn 26286 dvply1 26325 aaliou2 26382 colline 28657 axcontlem2 28980 dfrdg4 35952 arg-ax 36417 unbdqndv2lem2 36511 elpell14qr2 42873 elpell1qr2 42883 jm2.22 43007 jm2.23 43008 jm2.26lem3 43013 ttac 43048 wepwsolem 43054 3ornot23VD 44867 fmul01lt1lem2 45600 cncfiooicclem1 45908 |
| Copyright terms: Public domain | W3C validator |