Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orel2 | Structured version Visualization version GIF version |
Description: Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.) |
Ref | Expression |
---|---|
orel2 | ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (¬ 𝜑 → (𝜓 → 𝜓)) | |
2 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
3 | 1, 2 | jaod 859 | 1 ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-or 848 |
This theorem is referenced by: pm2.64 942 pm2.74 975 pm5.61 1001 pm5.71 1028 xpcan2 6058 funun 6447 fnpr2ob 17096 ablfac1eulem 19492 drngmuleq0 19823 mdetunilem9 21549 maducoeval2 21569 tdeglem4OLD 24990 deg1sublt 25040 dgrnznn 25173 dvply1 25209 aaliou2 25265 colline 26772 axcontlem2 27088 3orel3 33401 dfrdg4 34024 arg-ax 34376 unbdqndv2lem2 34461 elpell14qr2 40435 elpell1qr2 40445 jm2.22 40568 jm2.23 40569 jm2.26lem3 40574 ttac 40609 wepwsolem 40618 3ornot23VD 42188 fmul01lt1lem2 42847 cncfiooicclem1 43155 |
Copyright terms: Public domain | W3C validator |