MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orel2 Structured version   Visualization version   GIF version

Theorem orel2 891
Description: Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.)
Assertion
Ref Expression
orel2 𝜑 → ((𝜓𝜑) → 𝜓))

Proof of Theorem orel2
StepHypRef Expression
1 idd 24 . 2 𝜑 → (𝜓𝜓))
2 pm2.21 123 . 2 𝜑 → (𝜑𝜓))
31, 2jaod 859 1 𝜑 → ((𝜓𝜑) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-or 848
This theorem is referenced by:  pm2.64  942  pm2.74  975  pm5.61  1001  pm5.71  1028  xpcan2  6058  funun  6447  fnpr2ob  17096  ablfac1eulem  19492  drngmuleq0  19823  mdetunilem9  21549  maducoeval2  21569  tdeglem4OLD  24990  deg1sublt  25040  dgrnznn  25173  dvply1  25209  aaliou2  25265  colline  26772  axcontlem2  27088  3orel3  33401  dfrdg4  34024  arg-ax  34376  unbdqndv2lem2  34461  elpell14qr2  40435  elpell1qr2  40445  jm2.22  40568  jm2.23  40569  jm2.26lem3  40574  ttac  40609  wepwsolem  40618  3ornot23VD  42188  fmul01lt1lem2  42847  cncfiooicclem1  43155
  Copyright terms: Public domain W3C validator