| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orel2 | Structured version Visualization version GIF version | ||
| Description: Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.) |
| Ref | Expression |
|---|---|
| orel2 | ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (¬ 𝜑 → (𝜓 → 𝜓)) | |
| 2 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | jaod 859 | 1 ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: pm2.64 943 pm2.74 976 pm5.61 1002 pm5.71 1029 3orel3 1488 xpcan2 6129 funun 6532 fnpr2ob 17464 ablfac1eulem 19988 drngmuleq0 20680 mdetunilem9 22536 maducoeval2 22556 deg1sublt 26043 dgrnznn 26180 dvply1 26219 aaliou2 26276 colline 28628 axcontlem2 28945 dfrdg4 36016 arg-ax 36481 unbdqndv2lem2 36575 elpell14qr2 42979 elpell1qr2 42989 jm2.22 43112 jm2.23 43113 jm2.26lem3 43118 ttac 43153 wepwsolem 43159 3ornot23VD 44963 fmul01lt1lem2 45709 cncfiooicclem1 46015 |
| Copyright terms: Public domain | W3C validator |