![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orel2 | Structured version Visualization version GIF version |
Description: Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.) |
Ref | Expression |
---|---|
orel2 | ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (¬ 𝜑 → (𝜓 → 𝜓)) | |
2 | pm2.21 121 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
3 | 1, 2 | jaod 886 | 1 ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-or 875 |
This theorem is referenced by: biorfi 963 pm2.64 966 pm2.74 998 pm5.71 1053 prel12OLD 4569 xpcan2 5789 funun 6147 ablfac1eulem 18786 drngmuleq0 19087 mdetunilem9 20751 maducoeval2 20771 tdeglem4 24160 deg1sublt 24210 dgrnznn 24343 dvply1 24379 aaliou2 24435 colline 25899 axcontlem2 26201 3orel3 32107 dfrdg4 32570 arg-ax 32922 unbdqndv2lem2 33008 elpell14qr2 38207 elpell1qr2 38217 jm2.22 38342 jm2.23 38343 jm2.26lem3 38348 ttac 38383 wepwsolem 38392 3ornot23VD 39838 fmul01lt1lem2 40556 cncfiooicclem1 40845 |
Copyright terms: Public domain | W3C validator |