MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orel2 Structured version   Visualization version   GIF version

Theorem orel2 887
Description: Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.)
Assertion
Ref Expression
orel2 𝜑 → ((𝜓𝜑) → 𝜓))

Proof of Theorem orel2
StepHypRef Expression
1 idd 24 . 2 𝜑 → (𝜓𝜓))
2 pm2.21 123 . 2 𝜑 → (𝜑𝜓))
31, 2jaod 855 1 𝜑 → ((𝜓𝜑) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844
This theorem is referenced by:  pm2.64  938  pm2.74  971  pm5.61  997  pm5.71  1024  xpcan2  6069  funun  6464  fnpr2ob  17186  ablfac1eulem  19590  drngmuleq0  19929  mdetunilem9  21677  maducoeval2  21697  tdeglem4OLD  25130  deg1sublt  25180  dgrnznn  25313  dvply1  25349  aaliou2  25405  colline  26914  axcontlem2  27236  3orel3  33557  dfrdg4  34180  arg-ax  34532  unbdqndv2lem2  34617  elpell14qr2  40600  elpell1qr2  40610  jm2.22  40733  jm2.23  40734  jm2.26lem3  40739  ttac  40774  wepwsolem  40783  3ornot23VD  42356  fmul01lt1lem2  43016  cncfiooicclem1  43324
  Copyright terms: Public domain W3C validator