| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orel2 | Structured version Visualization version GIF version | ||
| Description: Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.) |
| Ref | Expression |
|---|---|
| orel2 | ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (¬ 𝜑 → (𝜓 → 𝜓)) | |
| 2 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | jaod 859 | 1 ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: pm2.64 943 pm2.74 976 pm5.61 1002 pm5.71 1029 3orel3 1488 xpcan2 6153 funun 6565 fnpr2ob 17528 ablfac1eulem 20011 drngmuleq0 20679 mdetunilem9 22514 maducoeval2 22534 deg1sublt 26022 dgrnznn 26159 dvply1 26198 aaliou2 26255 colline 28583 axcontlem2 28899 dfrdg4 35946 arg-ax 36411 unbdqndv2lem2 36505 elpell14qr2 42857 elpell1qr2 42867 jm2.22 42991 jm2.23 42992 jm2.26lem3 42997 ttac 43032 wepwsolem 43038 3ornot23VD 44843 fmul01lt1lem2 45590 cncfiooicclem1 45898 |
| Copyright terms: Public domain | W3C validator |