MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orel2 Structured version   Visualization version   GIF version

Theorem orel2 890
Description: Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.)
Assertion
Ref Expression
orel2 𝜑 → ((𝜓𝜑) → 𝜓))

Proof of Theorem orel2
StepHypRef Expression
1 idd 24 . 2 𝜑 → (𝜓𝜓))
2 pm2.21 123 . 2 𝜑 → (𝜑𝜓))
31, 2jaod 859 1 𝜑 → ((𝜓𝜑) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  pm2.64  943  pm2.74  976  pm5.61  1002  pm5.71  1029  3orel3  1488  xpcan2  6150  funun  6562  fnpr2ob  17521  ablfac1eulem  20004  drngmuleq0  20672  mdetunilem9  22507  maducoeval2  22527  deg1sublt  26015  dgrnznn  26152  dvply1  26191  aaliou2  26248  colline  28576  axcontlem2  28892  dfrdg4  35939  arg-ax  36404  unbdqndv2lem2  36498  elpell14qr2  42850  elpell1qr2  42860  jm2.22  42984  jm2.23  42985  jm2.26lem3  42990  ttac  43025  wepwsolem  43031  3ornot23VD  44836  fmul01lt1lem2  45583  cncfiooicclem1  45891
  Copyright terms: Public domain W3C validator