MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.65 Structured version   Visualization version   GIF version

Theorem pm2.65 192
Description: Theorem *2.65 of [WhiteheadRussell] p. 107. Proof by contradiction. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 8-Mar-2013.)
Assertion
Ref Expression
pm2.65 ((𝜑𝜓) → ((𝜑 → ¬ 𝜓) → ¬ 𝜑))

Proof of Theorem pm2.65
StepHypRef Expression
1 idd 24 . 2 ((𝜑𝜓) → (¬ 𝜑 → ¬ 𝜑))
2 con3 153 . 2 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
31, 2jad 187 1 ((𝜑𝜓) → ((𝜑 → ¬ 𝜓) → ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm4.82  1021
  Copyright terms: Public domain W3C validator