|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pm2.61 | Structured version Visualization version GIF version | ||
| Description: Theorem *2.61 of [WhiteheadRussell] p. 107. Useful for eliminating an antecedent. (Contributed by NM, 4-Jan-1993.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) | 
| Ref | Expression | 
|---|---|
| pm2.61 | ⊢ ((𝜑 → 𝜓) → ((¬ 𝜑 → 𝜓) → 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm2.6 191 | . 2 ⊢ ((¬ 𝜑 → 𝜓) → ((𝜑 → 𝜓) → 𝜓)) | |
| 2 | 1 | com12 32 | 1 ⊢ ((𝜑 → 𝜓) → ((¬ 𝜑 → 𝜓) → 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem is referenced by: bnj1109 34800 jath 35725 isltrn2N 40122 ltrnid 40137 ltrneq 40151 onfrALT 44569 onfrALTVD 44911 | 
| Copyright terms: Public domain | W3C validator |