|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pm4.82 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.82 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) | 
| Ref | Expression | 
|---|---|
| pm4.82 | ⊢ (((𝜑 → 𝜓) ∧ (𝜑 → ¬ 𝜓)) ↔ ¬ 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm2.65 193 | . . 3 ⊢ ((𝜑 → 𝜓) → ((𝜑 → ¬ 𝜓) → ¬ 𝜑)) | |
| 2 | 1 | imp 406 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜑 → ¬ 𝜓)) → ¬ 𝜑) | 
| 3 | pm2.21 123 | . . 3 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 4 | pm2.21 123 | . . 3 ⊢ (¬ 𝜑 → (𝜑 → ¬ 𝜓)) | |
| 5 | 3, 4 | jca 511 | . 2 ⊢ (¬ 𝜑 → ((𝜑 → 𝜓) ∧ (𝜑 → ¬ 𝜓))) | 
| 6 | 2, 5 | impbii 209 | 1 ⊢ (((𝜑 → 𝜓) ∧ (𝜑 → ¬ 𝜓)) ↔ ¬ 𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: alimp-no-surprise 49300 | 
| Copyright terms: Public domain | W3C validator |