Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.81 | Structured version Visualization version GIF version |
Description: Theorem *2.81 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm2.81 | ⊢ ((𝜓 → (𝜒 → 𝜃)) → ((𝜑 ∨ 𝜓) → ((𝜑 ∨ 𝜒) → (𝜑 ∨ 𝜃)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim2 964 | . 2 ⊢ ((𝜓 → (𝜒 → 𝜃)) → ((𝜑 ∨ 𝜓) → (𝜑 ∨ (𝜒 → 𝜃)))) | |
2 | pm2.76 928 | . 2 ⊢ ((𝜑 ∨ (𝜒 → 𝜃)) → ((𝜑 ∨ 𝜒) → (𝜑 ∨ 𝜃))) | |
3 | 1, 2 | syl6 35 | 1 ⊢ ((𝜓 → (𝜒 → 𝜃)) → ((𝜑 ∨ 𝜓) → ((𝜑 ∨ 𝜒) → (𝜑 ∨ 𝜃)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |