MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.8 Structured version   Visualization version   GIF version

Theorem pm2.8 969
Description: Theorem *2.8 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 5-Jan-2013.)
Assertion
Ref Expression
pm2.8 ((𝜑𝜓) → ((¬ 𝜓𝜒) → (𝜑𝜒)))

Proof of Theorem pm2.8
StepHypRef Expression
1 pm2.53 847 . . 3 ((𝜑𝜓) → (¬ 𝜑𝜓))
21con1d 145 . 2 ((𝜑𝜓) → (¬ 𝜓𝜑))
32orim1d 962 1 ((𝜑𝜓) → ((¬ 𝜓𝜒) → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator