MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orim2 Structured version   Visualization version   GIF version

Theorem orim2 964
Description: Axiom *1.6 (Sum) of [WhiteheadRussell] p. 97. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
orim2 ((𝜓𝜒) → ((𝜑𝜓) → (𝜑𝜒)))

Proof of Theorem orim2
StepHypRef Expression
1 id 22 . 2 ((𝜓𝜒) → (𝜓𝜒))
21orim2d 963 1 ((𝜓𝜒) → ((𝜑𝜓) → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844
This theorem is referenced by:  pm2.81  968  rb-ax1  1756  pthacycspth  33019
  Copyright terms: Public domain W3C validator