| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orim2 | Structured version Visualization version GIF version | ||
| Description: Axiom *1.6 (Sum) of [WhiteheadRussell] p. 97. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| orim2 | ⊢ ((𝜓 → 𝜒) → ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜓 → 𝜒) → (𝜓 → 𝜒)) | |
| 2 | 1 | orim2d 968 | 1 ⊢ ((𝜓 → 𝜒) → ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: pm2.81 973 rb-ax1 1752 pthacycspth 35184 |
| Copyright terms: Public domain | W3C validator |