Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orim2 | Structured version Visualization version GIF version |
Description: Axiom *1.6 (Sum) of [WhiteheadRussell] p. 97. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
orim2 | ⊢ ((𝜓 → 𝜒) → ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜓 → 𝜒) → (𝜓 → 𝜒)) | |
2 | 1 | orim2d 964 | 1 ⊢ ((𝜓 → 𝜒) → ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 |
This theorem is referenced by: pm2.81 969 rb-ax1 1755 pthacycspth 33119 |
Copyright terms: Public domain | W3C validator |