MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.45im Structured version   Visualization version   GIF version

Theorem pm4.45im 825
Description: Conjunction with implication. Compare Theorem *4.45 of [WhiteheadRussell] p. 119. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
pm4.45im (𝜑 ↔ (𝜑 ∧ (𝜓𝜑)))

Proof of Theorem pm4.45im
StepHypRef Expression
1 ax-1 6 . 2 (𝜑 → (𝜓𝜑))
21pm4.71i 560 1 (𝜑 ↔ (𝜑 ∧ (𝜓𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  difdif  4065
  Copyright terms: Public domain W3C validator