| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.71i | Structured version Visualization version GIF version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.) |
| Ref | Expression |
|---|---|
| pm4.71i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm4.71i | ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | pm4.71 557 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.71ri 560 pm4.24 563 anabs1 662 pm4.45im 827 pm4.45 999 eu6lem 2568 2eu5 2651 dfid2 5511 imadmrn 6018 dff1o2 6768 f12dfv 7207 isof1oidb 7258 isof1oopb 7259 xpsnen 8974 dfac5lem2 10015 axgroth6 10719 eqreznegel 12832 xrnemnf 13016 xrnepnf 13017 dfrp2 13294 elioopnf 13343 elioomnf 13344 elicopnf 13345 elxrge0 13357 isprm2 16593 efgrelexlemb 19662 opsrtoslem1 21990 tgphaus 24032 cfilucfil3 25247 ioombl1lem4 25489 vitalilem1 25536 ellogdm 26575 nb3grpr2 29361 upgr2wlk 29645 erclwwlkref 30000 erclwwlknref 30049 0spth 30106 0crct 30113 pjimai 32156 eulerpartlemt0 34382 bnj1101 34796 satfvsuclem2 35404 bj-snglc 37011 bj-epelb 37111 bj-opelidb1 37195 icorempo 37393 wl-cases2-dnf 37554 matunitlindf 37666 disjressuc2 38428 dflim5 43370 pm11.58 44431 |
| Copyright terms: Public domain | W3C validator |