| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.71i | Structured version Visualization version GIF version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.) |
| Ref | Expression |
|---|---|
| pm4.71i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm4.71i | ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | pm4.71 557 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.71ri 560 pm4.24 563 anabs1 662 pm4.45im 827 pm4.45 999 eu6lem 2566 2eu5 2649 rabeqcOLD 3646 dfid2 5516 imadmrn 6021 dff1o2 6769 f12dfv 7210 isof1oidb 7261 isof1oopb 7262 xpsnen 8978 dfac5lem2 10018 axgroth6 10722 eqreznegel 12835 xrnemnf 13019 xrnepnf 13020 dfrp2 13297 elioopnf 13346 elioomnf 13347 elicopnf 13348 elxrge0 13360 isprm2 16593 efgrelexlemb 19629 opsrtoslem1 21960 tgphaus 24002 cfilucfil3 25218 ioombl1lem4 25460 vitalilem1 25507 ellogdm 26546 nb3grpr2 29328 upgr2wlk 29612 erclwwlkref 29964 erclwwlknref 30013 0spth 30070 0crct 30077 pjimai 32120 eulerpartlemt0 34337 bnj1101 34751 satfvsuclem2 35333 bj-snglc 36943 bj-epelb 37043 bj-opelidb1 37127 icorempo 37325 wl-cases2-dnf 37486 matunitlindf 37598 disjressuc2 38360 dflim5 43302 pm11.58 44363 |
| Copyright terms: Public domain | W3C validator |