| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.71i | Structured version Visualization version GIF version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.) |
| Ref | Expression |
|---|---|
| pm4.71i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm4.71i | ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | pm4.71 557 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.71ri 560 pm4.24 563 anabs1 662 pm4.45im 827 pm4.45 999 eu6lem 2566 2eu5 2649 rabeqcOLD 3657 dfid2 5535 imadmrn 6041 dff1o2 6805 f12dfv 7248 isof1oidb 7299 isof1oopb 7300 xpsnen 9025 dfac5lem2 10077 axgroth6 10781 eqreznegel 12893 xrnemnf 13077 xrnepnf 13078 dfrp2 13355 elioopnf 13404 elioomnf 13405 elicopnf 13406 elxrge0 13418 isprm2 16652 efgrelexlemb 19680 opsrtoslem1 21962 tgphaus 24004 cfilucfil3 25220 ioombl1lem4 25462 vitalilem1 25509 ellogdm 26548 nb3grpr2 29310 upgr2wlk 29596 erclwwlkref 29949 erclwwlknref 29998 0spth 30055 0crct 30062 pjimai 32105 eulerpartlemt0 34360 bnj1101 34774 satfvsuclem2 35347 bj-snglc 36957 bj-epelb 37057 bj-opelidb1 37141 icorempo 37339 wl-cases2-dnf 37500 matunitlindf 37612 disjressuc2 38374 dflim5 43318 pm11.58 44379 |
| Copyright terms: Public domain | W3C validator |