| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.71i | Structured version Visualization version GIF version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.) |
| Ref | Expression |
|---|---|
| pm4.71i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm4.71i | ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | pm4.71 557 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.71ri 560 pm4.24 563 anabs1 662 pm4.45im 827 pm4.45 999 eu6lem 2566 2eu5 2649 rabeqcOLD 3654 dfid2 5528 imadmrn 6030 dff1o2 6787 f12dfv 7230 isof1oidb 7281 isof1oopb 7282 xpsnen 9002 dfac5lem2 10053 axgroth6 10757 eqreznegel 12869 xrnemnf 13053 xrnepnf 13054 dfrp2 13331 elioopnf 13380 elioomnf 13381 elicopnf 13382 elxrge0 13394 isprm2 16628 efgrelexlemb 19664 opsrtoslem1 21995 tgphaus 24037 cfilucfil3 25253 ioombl1lem4 25495 vitalilem1 25542 ellogdm 26581 nb3grpr2 29363 upgr2wlk 29647 erclwwlkref 29999 erclwwlknref 30048 0spth 30105 0crct 30112 pjimai 32155 eulerpartlemt0 34353 bnj1101 34767 satfvsuclem2 35340 bj-snglc 36950 bj-epelb 37050 bj-opelidb1 37134 icorempo 37332 wl-cases2-dnf 37493 matunitlindf 37605 disjressuc2 38367 dflim5 43311 pm11.58 44372 |
| Copyright terms: Public domain | W3C validator |