| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.71i | Structured version Visualization version GIF version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.) |
| Ref | Expression |
|---|---|
| pm4.71i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm4.71i | ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | pm4.71 557 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.71ri 560 pm4.24 563 anabs1 662 pm4.45im 827 pm4.45 999 eu6lem 2567 2eu5 2650 rabeqcOLD 3660 dfid2 5538 imadmrn 6044 dff1o2 6808 f12dfv 7251 isof1oidb 7302 isof1oopb 7303 xpsnen 9029 dfac5lem2 10084 axgroth6 10788 eqreznegel 12900 xrnemnf 13084 xrnepnf 13085 dfrp2 13362 elioopnf 13411 elioomnf 13412 elicopnf 13413 elxrge0 13425 isprm2 16659 efgrelexlemb 19687 opsrtoslem1 21969 tgphaus 24011 cfilucfil3 25227 ioombl1lem4 25469 vitalilem1 25516 ellogdm 26555 nb3grpr2 29317 upgr2wlk 29603 erclwwlkref 29956 erclwwlknref 30005 0spth 30062 0crct 30069 pjimai 32112 eulerpartlemt0 34367 bnj1101 34781 satfvsuclem2 35354 bj-snglc 36964 bj-epelb 37064 bj-opelidb1 37148 icorempo 37346 wl-cases2-dnf 37507 matunitlindf 37619 disjressuc2 38381 dflim5 43325 pm11.58 44386 |
| Copyright terms: Public domain | W3C validator |