| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.71i | Structured version Visualization version GIF version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.) |
| Ref | Expression |
|---|---|
| pm4.71i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm4.71i | ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | pm4.71 557 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.71ri 560 pm4.24 563 anabs1 662 pm4.45im 827 pm4.45 999 eu6lem 2572 2eu5 2655 rabeqcOLD 3669 dfid2 5550 imadmrn 6057 dff1o2 6823 f12dfv 7266 isof1oidb 7317 isof1oopb 7318 xpsnen 9069 dom0OLD 9117 dfac5lem2 10138 axgroth6 10842 eqreznegel 12950 xrnemnf 13133 xrnepnf 13134 dfrp2 13411 elioopnf 13460 elioomnf 13461 elicopnf 13462 elxrge0 13474 isprm2 16701 efgrelexlemb 19731 opsrtoslem1 22013 tgphaus 24055 cfilucfil3 25272 ioombl1lem4 25514 vitalilem1 25561 ellogdm 26600 nb3grpr2 29362 upgr2wlk 29648 erclwwlkref 30001 erclwwlknref 30050 0spth 30107 0crct 30114 pjimai 32157 eulerpartlemt0 34401 bnj1101 34815 satfvsuclem2 35382 bj-snglc 36987 bj-epelb 37087 bj-opelidb1 37171 icorempo 37369 wl-cases2-dnf 37530 matunitlindf 37642 disjressuc2 38406 dflim5 43353 pm11.58 44414 |
| Copyright terms: Public domain | W3C validator |