![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm4.71i | Structured version Visualization version GIF version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.) |
Ref | Expression |
---|---|
pm4.71i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm4.71i | ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | pm4.71 557 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
3 | 1, 2 | mpbi 230 | 1 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: pm4.71ri 560 pm4.24 563 anabs1 661 pm4.45im 827 pm4.45 998 eu6lem 2576 2eu5 2659 rabeqcOLD 3706 dfid2 5595 imadmrn 6099 dff1o2 6867 f12dfv 7309 isof1oidb 7360 isof1oopb 7361 xpsnen 9121 dom0OLD 9169 dfac5lem2 10193 axgroth6 10897 eqreznegel 12999 xrnemnf 13180 xrnepnf 13181 dfrp2 13456 elioopnf 13503 elioomnf 13504 elicopnf 13505 elxrge0 13517 isprm2 16729 efgrelexlemb 19792 opsrtoslem1 22102 tgphaus 24146 cfilucfil3 25373 ioombl1lem4 25615 vitalilem1 25662 ellogdm 26699 nb3grpr2 29418 upgr2wlk 29704 erclwwlkref 30052 erclwwlknref 30101 0spth 30158 0crct 30165 pjimai 32208 eulerpartlemt0 34334 bnj1101 34760 satfvsuclem2 35328 bj-snglc 36935 bj-epelb 37035 bj-opelidb1 37119 icorempo 37317 wl-cases2-dnf 37466 matunitlindf 37578 disjressuc2 38344 dflim5 43291 pm11.58 44359 |
Copyright terms: Public domain | W3C validator |