Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm4.71i | Structured version Visualization version GIF version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.) |
Ref | Expression |
---|---|
pm4.71i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm4.71i | ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | pm4.71 557 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: pm4.71ri 560 pm4.24 563 anabs1 658 pm4.45im 824 pm4.45 994 eu6lem 2573 2eu5 2657 rabeqc 3615 dfid2 5482 imadmrn 5968 dff1o2 6705 f12dfv 7126 isof1oidb 7175 isof1oopb 7176 xpsnen 8796 dom0 8841 dfac5lem2 9811 pwfseqlem4 10349 axgroth6 10515 eqreznegel 12603 xrnemnf 12782 xrnepnf 12783 dfrp2 13057 elioopnf 13104 elioomnf 13105 elicopnf 13106 elxrge0 13118 isprm2 16315 efgrelexlemb 19271 opsrtoslem1 21172 tgphaus 23176 cfilucfil3 24389 ioombl1lem4 24630 vitalilem1 24677 ellogdm 25699 nb3grpr2 27653 upgr2wlk 27938 erclwwlkref 28285 erclwwlknref 28334 0spth 28391 0crct 28398 pjimai 30439 eulerpartlemt0 32236 bnj1101 32664 satfvsuclem2 33222 bj-snglc 35086 bj-epelb 35167 bj-opelidb1 35251 icorempo 35449 wl-cases2-dnf 35598 matunitlindf 35702 pm11.58 41897 |
Copyright terms: Public domain | W3C validator |