![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm4.71i | Structured version Visualization version GIF version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.) |
Ref | Expression |
---|---|
pm4.71i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm4.71i | ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | pm4.71 559 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: pm4.71ri 562 pm4.24 565 anabs1 661 pm4.45im 827 pm4.45 997 eu6lem 2568 2eu5 2652 rabeqcOLD 3682 dfid2 5577 imadmrn 6070 dff1o2 6839 f12dfv 7271 isof1oidb 7321 isof1oopb 7322 xpsnen 9055 dom0OLD 9103 dfac5lem2 10119 pwfseqlem4 10657 axgroth6 10823 eqreznegel 12918 xrnemnf 13097 xrnepnf 13098 dfrp2 13373 elioopnf 13420 elioomnf 13421 elicopnf 13422 elxrge0 13434 isprm2 16619 efgrelexlemb 19618 opsrtoslem1 21616 tgphaus 23621 cfilucfil3 24837 ioombl1lem4 25078 vitalilem1 25125 ellogdm 26147 nb3grpr2 28671 upgr2wlk 28956 erclwwlkref 29304 erclwwlknref 29353 0spth 29410 0crct 29417 pjimai 31460 eulerpartlemt0 33399 bnj1101 33826 satfvsuclem2 34382 bj-snglc 35898 bj-epelb 35998 bj-opelidb1 36082 icorempo 36280 wl-cases2-dnf 36429 matunitlindf 36534 disjressuc2 37306 dflim5 42127 pm11.58 43197 |
Copyright terms: Public domain | W3C validator |