![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm4.71i | Structured version Visualization version GIF version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.) |
Ref | Expression |
---|---|
pm4.71i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm4.71i | ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | pm4.71 557 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
3 | 1, 2 | mpbi 230 | 1 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: pm4.71ri 560 pm4.24 563 anabs1 662 pm4.45im 828 pm4.45 999 eu6lem 2570 2eu5 2653 rabeqcOLD 3692 dfid2 5584 imadmrn 6089 dff1o2 6853 f12dfv 7292 isof1oidb 7343 isof1oopb 7344 xpsnen 9093 dom0OLD 9141 dfac5lem2 10161 axgroth6 10865 eqreznegel 12973 xrnemnf 13156 xrnepnf 13157 dfrp2 13432 elioopnf 13479 elioomnf 13480 elicopnf 13481 elxrge0 13493 isprm2 16715 efgrelexlemb 19782 opsrtoslem1 22096 tgphaus 24140 cfilucfil3 25367 ioombl1lem4 25609 vitalilem1 25656 ellogdm 26695 nb3grpr2 29414 upgr2wlk 29700 erclwwlkref 30048 erclwwlknref 30097 0spth 30154 0crct 30161 pjimai 32204 eulerpartlemt0 34350 bnj1101 34776 satfvsuclem2 35344 bj-snglc 36951 bj-epelb 37051 bj-opelidb1 37135 icorempo 37333 wl-cases2-dnf 37492 matunitlindf 37604 disjressuc2 38369 dflim5 43318 pm11.58 44385 |
Copyright terms: Public domain | W3C validator |