| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.71i | Structured version Visualization version GIF version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.) |
| Ref | Expression |
|---|---|
| pm4.71i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm4.71i | ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | pm4.71 557 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.71ri 560 pm4.24 563 anabs1 662 pm4.45im 827 pm4.45 999 eu6lem 2566 2eu5 2649 rabeqcOLD 3654 dfid2 5528 imadmrn 6030 dff1o2 6787 f12dfv 7230 isof1oidb 7281 isof1oopb 7282 xpsnen 9002 dfac5lem2 10053 axgroth6 10757 eqreznegel 12869 xrnemnf 13053 xrnepnf 13054 dfrp2 13331 elioopnf 13380 elioomnf 13381 elicopnf 13382 elxrge0 13394 isprm2 16628 efgrelexlemb 19656 opsrtoslem1 21938 tgphaus 23980 cfilucfil3 25196 ioombl1lem4 25438 vitalilem1 25485 ellogdm 26524 nb3grpr2 29286 upgr2wlk 29570 erclwwlkref 29922 erclwwlknref 29971 0spth 30028 0crct 30035 pjimai 32078 eulerpartlemt0 34333 bnj1101 34747 satfvsuclem2 35320 bj-snglc 36930 bj-epelb 37030 bj-opelidb1 37114 icorempo 37312 wl-cases2-dnf 37473 matunitlindf 37585 disjressuc2 38347 dflim5 43291 pm11.58 44352 |
| Copyright terms: Public domain | W3C validator |