Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difdif | Structured version Visualization version GIF version |
Description: Double class difference. Exercise 11 of [TakeutiZaring] p. 22. (Contributed by NM, 17-May-1998.) |
Ref | Expression |
---|---|
difdif | ⊢ (𝐴 ∖ (𝐵 ∖ 𝐴)) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.45im 824 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
2 | iman 401 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴) ↔ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
3 | eldif 3893 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
4 | 2, 3 | xchbinxr 334 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴) ↔ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴)) |
5 | 4 | anbi2i 622 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴))) |
6 | 1, 5 | bitr2i 275 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴)) ↔ 𝑥 ∈ 𝐴) |
7 | 6 | difeqri 4055 | 1 ⊢ (𝐴 ∖ (𝐵 ∖ 𝐴)) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 |
This theorem is referenced by: dif0 4303 undifabs 4408 |
Copyright terms: Public domain | W3C validator |