MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difdif Structured version   Visualization version   GIF version

Theorem difdif 4065
Description: Double class difference. Exercise 11 of [TakeutiZaring] p. 22. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
difdif (𝐴 ∖ (𝐵𝐴)) = 𝐴

Proof of Theorem difdif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm4.45im 825 . . 3 (𝑥𝐴 ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐴)))
2 iman 402 . . . . 5 ((𝑥𝐵𝑥𝐴) ↔ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
3 eldif 3897 . . . . 5 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
42, 3xchbinxr 335 . . . 4 ((𝑥𝐵𝑥𝐴) ↔ ¬ 𝑥 ∈ (𝐵𝐴))
54anbi2i 623 . . 3 ((𝑥𝐴 ∧ (𝑥𝐵𝑥𝐴)) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐵𝐴)))
61, 5bitr2i 275 . 2 ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) ↔ 𝑥𝐴)
76difeqri 4059 1 (𝐴 ∖ (𝐵𝐴)) = 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  cdif 3884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890
This theorem is referenced by:  dif0  4306  undifabs  4411
  Copyright terms: Public domain W3C validator