| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difdif | Structured version Visualization version GIF version | ||
| Description: Double class difference. Exercise 11 of [TakeutiZaring] p. 22. (Contributed by NM, 17-May-1998.) |
| Ref | Expression |
|---|---|
| difdif | ⊢ (𝐴 ∖ (𝐵 ∖ 𝐴)) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.45im 828 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
| 2 | iman 401 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴) ↔ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
| 3 | eldif 3961 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
| 4 | 2, 3 | xchbinxr 335 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴) ↔ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴)) |
| 5 | 4 | anbi2i 623 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴))) |
| 6 | 1, 5 | bitr2i 276 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴)) ↔ 𝑥 ∈ 𝐴) |
| 7 | 6 | difeqri 4128 | 1 ⊢ (𝐴 ∖ (𝐵 ∖ 𝐴)) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∖ cdif 3948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-dif 3954 |
| This theorem is referenced by: dif0 4378 undifabs 4478 |
| Copyright terms: Public domain | W3C validator |