MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abai Structured version   Visualization version   GIF version

Theorem abai 825
Description: Introduce one conjunct as an antecedent to the other. "abai" stands for "and, biconditional, and, implication". (Contributed by NM, 12-Aug-1993.) (Proof shortened by Wolf Lammen, 7-Dec-2012.)
Assertion
Ref Expression
abai ((𝜑𝜓) ↔ (𝜑 ∧ (𝜑𝜓)))

Proof of Theorem abai
StepHypRef Expression
1 biimt 361 . 2 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
21pm5.32i 576 1 ((𝜑𝜓) ↔ (𝜑 ∧ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  pm5.75  1027  exintrbi  1892  dfeumo  2535  eu6  2572  dfeu  2593  r19.29imd  3118  dfss4  4198  indifdi  4223  choc0  29737
  Copyright terms: Public domain W3C validator