MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.54 Structured version   Visualization version   GIF version

Theorem pm4.54 983
Description: Theorem *4.54 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 5-Nov-2012.)
Assertion
Ref Expression
pm4.54 ((¬ 𝜑𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓))

Proof of Theorem pm4.54
StepHypRef Expression
1 df-an 396 . 2 ((¬ 𝜑𝜓) ↔ ¬ (¬ 𝜑 → ¬ 𝜓))
2 pm4.66 846 . 2 ((¬ 𝜑 → ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓))
31, 2xchbinx 333 1 ((¬ 𝜑𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844
This theorem is referenced by:  pm4.55  984
  Copyright terms: Public domain W3C validator