Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm4.53 | Structured version Visualization version GIF version |
Description: Theorem *4.53 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm4.53 | ⊢ (¬ (𝜑 ∧ ¬ 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.52 983 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (¬ 𝜑 ∨ 𝜓)) | |
2 | 1 | con2bii 358 | . 2 ⊢ ((¬ 𝜑 ∨ 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
3 | 2 | bicomi 223 | 1 ⊢ (¬ (𝜑 ∧ ¬ 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 397 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 |
This theorem is referenced by: undif3 4242 itg2addnclem 35982 cdleme32e 38762 undif3VD 42873 |
Copyright terms: Public domain | W3C validator |