|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pm4.53 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.53 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) | 
| Ref | Expression | 
|---|---|
| pm4.53 | ⊢ (¬ (𝜑 ∧ ¬ 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm4.52 986 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (¬ 𝜑 ∨ 𝜓)) | |
| 2 | 1 | con2bii 357 | . 2 ⊢ ((¬ 𝜑 ∨ 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | 
| 3 | 2 | bicomi 224 | 1 ⊢ (¬ (𝜑 ∧ ¬ 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 | 
| This theorem is referenced by: undif3 4299 itg2addnclem 37679 cdleme32e 40448 undif3VD 44907 | 
| Copyright terms: Public domain | W3C validator |