| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.77 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.77 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm4.77 | ⊢ (((𝜓 → 𝜑) ∧ (𝜒 → 𝜑)) ↔ ((𝜓 ∨ 𝜒) → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaob 963 | . 2 ⊢ (((𝜓 ∨ 𝜒) → 𝜑) ↔ ((𝜓 → 𝜑) ∧ (𝜒 → 𝜑))) | |
| 2 | 1 | bicomi 224 | 1 ⊢ (((𝜓 → 𝜑) ∧ (𝜒 → 𝜑)) ↔ ((𝜓 ∨ 𝜒) → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |