MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.77 Structured version   Visualization version   GIF version

Theorem pm4.77 960
Description: Theorem *4.77 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.77 (((𝜓𝜑) ∧ (𝜒𝜑)) ↔ ((𝜓𝜒) → 𝜑))

Proof of Theorem pm4.77
StepHypRef Expression
1 jaob 959 . 2 (((𝜓𝜒) → 𝜑) ↔ ((𝜓𝜑) ∧ (𝜒𝜑)))
21bicomi 223 1 (((𝜓𝜑) ∧ (𝜒𝜑)) ↔ ((𝜓𝜒) → 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator