Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm4.77 | Structured version Visualization version GIF version |
Description: Theorem *4.77 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm4.77 | ⊢ (((𝜓 → 𝜑) ∧ (𝜒 → 𝜑)) ↔ ((𝜓 ∨ 𝜒) → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaob 959 | . 2 ⊢ (((𝜓 ∨ 𝜒) → 𝜑) ↔ ((𝜓 → 𝜑) ∧ (𝜒 → 𝜑))) | |
2 | 1 | bicomi 223 | 1 ⊢ (((𝜓 → 𝜑) ∧ (𝜒 → 𝜑)) ↔ ((𝜓 ∨ 𝜒) → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |